
Jason Ostrander

Android UI
Fundamentals
Develop and Design

Jason Ostrander

Android UI
Fundamentals

Develop and Design

Android UI Fundamentals: Develop and Design
Jason Ostrander

Peachpit Press
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at www.peachpit.com
To report errors, please send a note to errata@peachpit.com
Peachpit Press is a division of Pearson Education.
Copyright © 2012 by Jason Ostrander

Editor: Clifford Colby
Development editor: Robyn Thomas
Production editor: Myrna Vladic
Copyeditor: Scout Festa
Technical editor: Jason LeBrun
Cover design: Aren Howell Straiger
Interior design: Mimi Heft
Compositor: Danielle Foster
Indexer: Valerie Haynes Perry

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the
publisher. For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis without warranty. While every precaution has
been taken in the preparation of the book, neither the author nor Peachpit shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the instructions contained in this book or by the computer software and hardware products described in it.

Trademarks
Android is a trademark of Google Inc., registered in the United States and other countries. Many of the
designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and Peachpit was aware of a trademark claim, the designa-
tions appear as requested by the owner of the trademark. All other product names and services identified
throughout this book are used in editorial fashion only and for the benefit of such companies with no
intention of infringement of the trademark. No such use, or the use of any trade name, is intended to
convey endorsement or other affiliation with this book.

ISBN 13:	 978-0-321-81458-6
ISBN 10: 	 0-321-81458-4

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.peachpit.com

To my lovely wife, Susan,
who tirelessly supports me in all of my adventures.

iv  Android UI Fundamentals: Develop and Design

I could write an entire book thanking people for their help along the way. Instead,
I’ll have to settle for this short paragraph:

Thanks to Chris H. for pushing me to consider writing a book and giving me
endless encouragement and support. To Cliff C. for giving me the chance to write
this book. To Robyn T. for keeping me on schedule despite my best efforts. To
JBL for fixing my code and rocking a mean bass guitar. To Scout F. and Myrna V.
for working tirelessly when I was late getting chapters to them. To Lucas D. and
Rob S. for reading early chapters and giving me valuable feedback. To the entire
team at doubleTwist for their dedication to making great Android software. To
the Android team at Google for creating a great platform. To my family for their
continuing support despite my dropping off the face of the earth. To Peachpit for
giving me the opportunity to write this for you. And to you, the reader, for giving
me the chance to teach you in whatever small way I can.

Bio

Jason Ostrander is a web and mobile software developer working at Silicon Valley
startup doubleTwist, where he makes syncing media to Android phones simple.
Prior to that, he solved networking problems at energy management startup
Sentilla and defense company Northrop Grumman. Jason holds an MS in electrical
engineering from UCLA. He lives with his wife in San Francisco’s Mission District,
where he spends his time searching for the perfect chile relleno.

Acknowledgments

Contents  v

Introduction . viii

Welcome to Android . x

Part 1  Basic Android UI

Chapter 1	 Getting Started. . 2
Hello World . 4

Basic Structure of an Android App . 9

Android UI Basics . 14

Tools . 22

Wrapping Up . 32

Chapter 2	 Creating Your First Application . . 34
Creating an App . 36

Getting Started with Android Views . 37

Arranging Views . 41

Displaying a List . 52

Understanding Activities . 57

Preventing ANRs . 64

Finishing the TimeTracker App . 71

Wrapping Up . 73

Chapter 3	 Going Further. . 74
Supporting Multiple Screen Sizes .76

Handling Notifications . 84

Handling Events .92

Creating Menus . 96

Implementing the Time Tracker . 102

Wrapping Up . 107

Contents

vi  Android UI Fundamentals: Develop and Design

Part 2  The View Framework

Chapter 4	 Basic Views. . 110
Creating a Basic Form . 112

Displaying Images . 124

Creating Maps and Displaying Websites . 130

Wrapping Up . 136

Chapter 5	 Reusable UI. . 138
Abstracting Your Layouts . 140

Abstracting Styles and Themes . 148

Using Fragments . 153

Wrapping Up . 162

Chapter 6	 Navigation and Data Loading. . 164
Introducing the Action Bar . 166

Navigating Your App . 172

Loading Data into Views . 181

Wrapping Up . 186

Chapter 7	 Android Widgets. . 188
Creating a Basic Widget . 190

Creating a Collection Widget . 206

Wrapping Up . 211

Contents  vii

Part 3  Advanced UI Development

Chapter 8	 Handling Gestures . . 214
Listening to Touch Events . 216

Responding to Gestures . 224

Wrapping Up . 229

Chapter 9	 Animation. . 230
Creating Drawable Animations . 232

Creating View Animations . 235

Creating Property Animations . 246

Wrapping Up . 255

Chapter 10	 Creating Custom Views . . 256
Understanding How Android Draws Views . 258

Creating a Custom View . 259

Adding Custom Attributes to Your Custom Views267

Creating Compound Components . 274

Wrapping Up . 279

Chapter 11	 Creating Advanced Graphics. . 280
Using Canvas . 282

Using RenderScript . 289

Using OpenGL . 294

Wrapping Up . 301

Chapter 12	 Localization and Accessibility. . 302
Making Your App Available in Multiple Languages 304

Making Your App Accessible . 309

Wrapping Up . 315

Index . 316

viii  Android UI Fundamentals: Develop and Design

There is a revolution happening in the technology industry. Touchscreen interfaces,
combined with low-cost and ubiquitous smartphones, have created a perfect storm
for disruptive innovation. Android is at the forefront of this change, bringing a free
and open-source platform on which developers can create the next generation of
applications. With free development tools and an open market, anyone can develop
applications that reach a worldwide market. But why choose to develop for Android?

Android now runs on the majority of smartphones in the United States. And
it’s quickly expanding into new markets and device types. The last year has seen
the introduction of hundreds of Android-based tablets, including the hit Kindle
Fire. Google has ported Android to TVs with its Google TV platform, and many
manufacturers are beginning to ship TVs with Android built in. Boeing has selected
Android as the entertainment platform for its new Dreamliner jet. Ford is integrat-
ing Android into its in-dash SYNC entertainment system. And Android is quickly
gaining traction in the developing world, especially in Africa, where the need for
low-cost handsets is greatest.

Yet for all of the platform’s promise, the majority of Android applications still
lack the visual polish of their iOS counterparts. This book aims to address that
issue by providing developers with a solid foundation for building app UIs. It will
cover the basics of UI development on Android, teach best practices for creating
flexible layouts, and give you tips on how to optimize your UI for smooth, fluid
performance. I created this book in the hope that it will help developers to create
beautiful applications.

Who am I? I’ve been developing software professionally for almost ten years,
and I’ve focused on embedded and mobile software for the last five. In my day job,
I work for one of the top Android development companies and write code that
millions of people use every day.

Android development can be difficult at times, and the challenges of supporting
such a diversity of devices can be daunting. But with a good idea, a solid under-
standing of the framework, and a little persistence, anyone can create a great app
that is used by millions of people.

I hope you’ll enjoy reading this book as much as I enjoyed writing it for you.

Introduction

Introduction  ix

Who This Book Is For

This book is aimed at beginning Android developers who are interested in creating
great user interfaces. You are expected to know basic Java programming and XML
syntax. The focus of this book is on UI. While you don’t need to have experience
writing Android software, many basic Android concepts are only described in
passing. It will help you to have a rudimentary knowledge of Android development.

Who This Book Is Not For

This book is not a general introduction to programming for Android. While it is
intended for beginning Android developers, the focus is on user interface tools
and programming. In particular, this book will not cover basic Android concepts
such as intents, services, or content providers. Further, this book will not be an
introduction to the Java programming language or to XML. You should know how
to program and how to read XML.

How You Will Learn

Throughout this book, you’ll learn by creating an actual app, a simple time
tracker. Each chapter includes detailed examples of real Android code that you
will compile and run. All code for the book can be found at the book’s website:
www.peachpit.com/androiduifundamentals.

What You Will Learn

You’ll learn how to create user interfaces for Android applications. From the most
basic concepts, like activities and views, all the way to advanced graphics using
RenderScript, this book covers everything you will use to build the user interface
of your apps.

A Note About Android Versions

This book was written to Android version 4 APIs and best practices, but it is com-
patible back to Android version 2.2. When relevant, notes and tips are included to
indicate when an API is deprecated or no longer appropriate. The Android com-
patibility library, a package of classes that back-port several newer features, will
be used throughout the book.

www.peachpit.com/androiduifundamentals

x  Android UI Fundamentals: Develop and Design

Welcome to Android

Throughout this book, you’ll be writing your code using the Eclipse integrated develop-

ment environment (IDE). You’ll need to install the Android software development kit

(SDK), along with the Android Developer Tools (ADT) plugin. This setup includes several

other utilities to help you develop and test your application. Aside from the SDK, none of

these tools are required, but they will make your application development easier.

The Tools

The following tools are used throughout this book to build, test, and analyze your
applications.

Android SDK

The Android SDK is
required to build and
deploy Android applica-
tions. The SDK contains
the tools you’ll use to test
and debug your applica-
tion. It also contains
tools for creating flexible
layouts. You can download
the Android SDK at http://
developer.android.com/.

Eclipse

Eclipse is the recom-
mended IDE for Android
development and is the
only IDE officially sup-
ported by Google. Google
publishes a plugin called
Android Developer Tools
that integrates with
Eclipse and provides
features like a drag-and-
drop interface builder. You
are not required to use
Eclipse, as the Android
SDK fully supports com-
mand-line development.
Throughout this book,
however, it is assumed
you are using Eclipse. You
can download Eclipse at
www.eclipse.org.

www.eclipse.org
http://developer.android.com/
http://developer.android.com/

Welcome to Android  xi

Android SDK
Manager

The Android SDK Manager
is used to download and
install the Android SDK.
You will also use the SDK
Manager to install add-on
features like sample code,
third-party emulators,
and the compatibility
library. The Android SDK
Manager can also be
used to create and launch
emulated Android devices,
called Android Virtual
Devices. The Android SDK
Manager can be found in
the SDK tools/ directory
as android.

Hierarchy Viewer

This tool displays a
graphical representation
of your layout hierarchy
and can help you debug
layout performance
issues by spotting overly
complex layouts. It’s also
a good tool for under-
standing how Android
layout works. You can
find this tool in the
SDK tools/ directory as
hierarchyviewer.

DDMS

The Dalvik Debug Monitor
Server (DDMS) is used
to debug application
performance issues. It
provides Java heap usage,
running thread counts,
and object allocation
tracking. You also use it
to take screen shots. The
DDMS tool is built into
Eclipse through the ADT
or can be run standalone
from the tools/ directory
of the SDK.

This page intentionally left blank

Part 1

Basic
Android UI

1

Getting Started

3

Android is a powerful mobile operating system, built

using a combination of the Java programming language

and XML-based layout and configuration files. This chap-

ter introduces the Android development environment, walks

through the basic Hello World application, and covers the Android

tools, with an emphasis on the user interface (UI) tools available in

the Android Developer Tools (ADT) plugin. In this chapter you’ll

create a Hello World application; learn the Android project layout

and purpose of each file and folder; learn basic Android UI con-

cepts like the Activity class and XML layouts; and discover the

tools available for creating user interfaces in Android.

Before you create a basic Hello World app, you must download and install the
Android developer tools available at developer.android.com. You will need to install
the Android software development kit (SDK), Eclipse, and the ADT plugin. Follow
the directions provided on the developer website to set up the Eclipse develop-
ment environment. All examples in this book use Android SDK Release 13 and the
Eclipse Helios release.

When ready, create the Hello World application using the following steps:

1.	 Start Eclipse.

2.	 Open the Java perspective by choosing Window > Open Perspective > Java.

3.	 Choose File > New > Android Project.

4.	 Leave all the defaults. Name the project Example and click Next (Figure 1.1).

Figure 1.1  The Android project
creation wizard

Hello World

4  Chapter 1  Getting Started

5.	 Set the Build Target option to Android 4.0 (Figure 1.2). You’ll build to
Android version 4.0 (API version 15) for all code in this book. Click Next.

6.	 Enter the package name com.example (Figure 1.3).

7.	 Click Finish, and the project will be created for you.

8.	 Run your app by right-clicking the Example project in the left-hand Package
Explorer pane and selecting Run As > Android Application.

Figure 1.2  The Android
project build target (left)

Figure 1.3  The Android
project properties (right)

Hello World  5

9.	 Select Yes when prompted to create a new Android Virtual Device (AVD).
This will open the AVD Manager (Figure 1.4). Click the New button and
configure it as shown in Figure 1.5. Click Create AVD when finished.

10.	In the AVD Manager, select the AVD you just created and click Start. When
prompted, click Launch. The emulator will start.

11.	 Once the emulator has loaded, close the AVD Manager, and the Android
Device Chooser will open (Figure 1.6). Select the running emulator, and
click OK.

Figure 1.4  The AVD Manager

6  Chapter 1  Getting Started

Figure 1.5  Android Virtual
Device (AVD) creation dialog

Figure 1.6  The Android Device Chooser

Hello World  7

Congratulations, you now have a running Android application (Figure 1.7).

Running the Example App on a Phone

If you want to run the Example app on your phone, follow these steps:

1.	 On your phone’s home screen, press Menu > Settings > Applications. Select
the “Unknown sources” checkbox to enable installation from your computer.

2.	 Open the Development menu and select the “USB debugging” checkbox.

3.	 Plug your phone into your computer.

4.	 Now close the emulator on your computer and run your application
again. It should install on your phone. If the Android Device Chooser
dialog appears, select your device from the list.

Figure 1.7  Hello World app
running on Android emulator

8  Chapter 1  Getting Started

Basic Structure of
an Android App

The Eclipse IDE created an initial project structure for you when you started a
new Android project. This project contains all the elements you need to build
your application, and you should generally place all your work in this project. It’s
possible to create a library project for code-sharing between applications, but for
most apps this is unnecessary. This section covers the basic structure of the project
folder and where you should place your code, layouts, and resources.

Folder Structure

Expand the Example project folder in the Package Explorer and take a look at the
project structure. Android uses a standard Java application layout. Table 1.1 sum-
marizes the project structure.

Table 1.1  Android Project Folder Structure

Item Explanation

src/ This folder contains your app’s Java source code. It follows the standard Java package
conventions. For example, a com.example.Foo class would be located in the folder
src/com/example/Foo.java.

res/ This folder contains all the resources of your app and is where you declare the layout
using XML. This folder contains all layout files, images, themes, and strings.

gen/ This folder is auto-generated when you compile the XML layouts in res/. It usually
contains only a single file, R.java. This file contains the constants you need to reference
the resources in the res/ folder. Do not edit anything in this folder.

assets/ This folder contains miscellaneous files needed by your application. If your app needs a
binary asset to function, place it here. To use these files, you need to open them using
the Java File application programming interfaces (APIs).

AndroidManifest.xml The manifest contains essential information about your app that the Android system
needs. This includes the activites and services your app uses, the permissions it requires,
any intents it responds to, and basic info like the app name.

default.properties Lists the Android API build target.

Basic Structure of an Android App  9

Android Manifest

The Android manifest contains all the information about your app’s structure and
functionality. It includes all the activities your app uses, the services it provides, any
database content it makes available via a content provider, and any intents it processes.

<?xml version=”1.0” encoding=”utf-8”?>

<manifest xmlns:android=”http://schemas.android.com/apk/res/android”

		 package=”com.example”

		 android:versionCode=”1”

		 android:versionName=”1.0”>

	 <uses-sdk android:minSdkVersion=”14” />

	 <uses-feature android:name=”android:hardware.bluetooth”/>

	 <supports-screens android:anyDensity=”true”/>

	 <application android:icon=”@drawable/icon”
	 p android:label=”@string/app_name”>

		 <activity android:name=”.ExampleActivity”

			 android:label=”@string/app_name”>

		 <intent-filter>

			 <action android:name=”android.intent.action.MAIN” />

			 <category android:name=”android.intent.category.
			 p LAUNCHER” />

			 </intent-filter>

		 </activity>

	 </application>

</manifest>

10  Chapter 1  Getting Started

The manifest is where you declare the physical hardware features your app
needs to run. For example, if your app requires a touchscreen device to operate
properly, you would include the following line in the manifest:

<uses-feature android:name=”android.hardware.touchscreen”
p android:required=”true” />

Declaring these hardware features as required by your application allows the
Android Market to properly filter applications based on a user’s hardware configu-
ration. Users with non-touchscreen phones would not be able to download an app
that requires a touchscreen to properly function.

You should strive to make your application as broadly compatible as possible.
List features your app uses, but use code to dynamically determine their availability
and gracefully degrade the user experience in your app.

The manifest is where you declare the permissions required by your app. Unlike
hardware requirements, all the permissions necessary to run your application must
be declared in the manifest. There are no optional permissions.

The manifest is where you declare the icons and labels used by your application.
You can assign these attributes to many of the XML elements in the manifest. The
most important is the top-level <application> element. This is what will represent
your application on the device home screen and app drawer. However, the icon/label
combination doesn’t just apply to the <application> element. You can use them on
the permissions element, which displays when the user accepts your application
to install. You can place them on the <activity> element, and the user will see
them in the process monitor. These elements are inherited by any sub-components.
Hence, if the <application> icon and label are set, but the <activity> and <intent>
icons and labels are not set, then those elements will use the <application> icon
and label by default. This setup allows you to use component-specific icons and
labels for informing the user of your application’s functions.

Note:  Users are very unforgiving of applications that
request overly broad permissions. This is especially true
of location permissions. Carefully consider the needs of your
application, and don’t request permissions that you don’t need.

Basic Structure of an Android App  11

Lastly, the manifest is where you declare your supported Android API versions.
It’s important that you declare the API level properly, because attempting to refer-
ence unsupported APIs will result in your application crashing. This is also a good
way to prevent your app from being installed on newer API releases that you may
not have tested yet. See Table 1.2 for more information on API levels.

Table 1.2  Android API Level Declaration

Item Explanation

android:minSDKVersion Declares the minimum API level required by your appli-
cation. Devices running Android versions lower than
this will not be able to install your application.

android:targetSDKVersion Declares the version of your application you are build-
ing against. This is what determines the features avail-
able to your app. If this differs from the minSDKVersion,
you may need to use Java reflection to access APIs that
are unavailable on the lower version.

android:maxSDKVersion Declares the maximum SDK your application supports.
Use this to prevent installation on newer devices that
you may not be ready to support.

Resources

Android apps store all resources in the res/ folder. What are resources? Basically,
resources are anything that isn’t Java code. Images, layout files, app strings, localized
strings, themes, and even animations go in the res/ folder. Android uses the direc-
tory structure to separate resources for use in different device configurations. In the
Hello World app, there are three drawable folders: drawable-ldpi, drawable-mdpi,
and drawable-hdpi. These represent low-, medium-, and high-density resources.
At runtime, the Android system will select the proper resource based on the device
hardware. If no resource matches, it will select the most closely matching resource.
This will be covered in depth in Chapter 3.

12  Chapter 1  Getting Started

The res/values/ folder is where you place constant values used in your
layout. You should place all colors, dimensions, styles, and strings in this folder.
In the example Hello World app, there is a single strings.xml file containing all
the user-visible strings used in the app:

<?xml version=”1.0” encoding=”utf-8”?>

<resources>

	 <string name=”hello”>Hello World, ExampleActivity!</string>

	 <string name=”app_name”>Example</string>

</resources>

You should never use string literals in your Java code or XML layouts. Always
declare any user-visible strings in the strings.xml file. This makes it easier to
localize your resources later. When using these strings in your app, you reference
them by the name attribute of the string element.

The res/layout/ folder also contains the XML files that declare your applica-
tion layout. Android UI can be created using either XML or Java code. It’s recom-
mended to use XML for layouts, because it provides a good separation between
UI and application logic. Folder names are used to separate layouts for different
device configurations.

Basic Structure of an Android App  13

Android UI Basics

The user interface (UI) is the connection between your app and your users. In fact,
to the user, the UI is the app. The Android UI framework is powerful enough to cre-
ate complex UIs with graphics and animations, but it also has enough flexibility to
scale from small-screen handheld devices to tablets to TVs. This section covers the
basics of Android UI development so you can start to create great UIs for your apps.

Home Screen and Notification Bar

To create Android apps, first you should understand the basic UI of the Android OS
itself. The first screen an Android user encounters is the home screen (Figure 1.8).
The home screen consists of sliding pages containing app launcher icons and
widgets. You can press the launcher icons to start the corresponding applications.
Widgets are like mini applications that present small chunks of data, such as weather
or unread email counts. At the bottom of the screen are quick-launch icons for
opening the phone dialer or email client. This also contains the launcher for the
app drawer. The app drawer contains all the user’s installed applications in a grid.

Figure 1.8  The Android home
screen, displaying widgets and
the quick-launch bar

14  Chapter 1  Getting Started

A key component of the Android UI is the notification tray (Figure 1.9). You
access the tray by touching the status bar at the top of the screen and sliding your
finger down. Android displays a list of all notifications in the notification tray:
new mail notifications, currently playing music, system status info, and any long-
running tasks such as downloads. Tapping a notification in the list typically opens
the app that generated the notification.

Figure 1.9  The Android
notification tray

Note:  You should be aware that the user could replace the stock
Android home screen with an alternative home screen. Generally,
these alternatives follow the same UI conventions as the stock Android
home screen. However, a few alternative home screens use radically
different UI conventions, so it’s a good idea not to rely on any particular
home screen feature in your app.

Android UI Basics  15

XML Layout

Android defines user interfaces using a combination of XML layout files and Java
code. You can use Java to specify all layouts, but it’s generally preferable to use
XML to take advantage of Android’s automatic resource selection. This allows you
to declare layouts for different hardware configurations, and the Android system
will select the most appropriate layout automatically.

Here is the code in the Hello World application’s main.xml file.

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/
p android”

	 android:orientation=”vertical”

	 android:layout_width=”match_parent”

	 android:layout_height=”match_parent”

	 >

<TextView

	 android:layout_width=”match_parent”

	 android:layout_height=”wrap_content”

	 android:text=”@string/hello”

	 />

</LinearLayout>

The first line is basic XML boilerplate, listing the version and encoding. This
is always the same and must be included at the beginning of every layout file.
The next line defines one of Android’s basic container types, the LinearLayout.
This view arranges its child views linearly inside it. You will learn more about
LinearLayouts in the next chapter.

Note:  The xmlns:android attribute is necessary and must be declared
in the top-level XML tag. This must always be present, or your resources

will not build.

16  Chapter 1  Getting Started

The LinearLayout is a simple container for displaying multiple sub-views
in a linear fashion. For example, a series of items could be displayed inside a
LinearLayout as a list. The android:orientation attribute declares the direction
in which the sub-views are arranged. In this case, the layout uses the vertical
orientation, and all sub-views will be arranged vertically. Finally, the width and
height of the layout are declared to fill the entire parent view (more on this later).

Inside the LinearLayout is a single TextView. As the name implies, this view
is used for displaying text to the user. The text attribute of the TextView declares
the text displayed in that TextView. In this case, it’s referencing a string defined in
the strings.xml file. Android uses the @ symbol to reference other resources. You
could have declared a string here, but it’s better to declare all user-visible strings
in the strings.xml file to aid localizing the app later. Also, you can change the
text dynamically using Java code.

Each element in the layout is a view. A view is anything that can be drawn on
the screen. Every text field, list item, web view, map, colorful spinning wheel, or
button is represented by a view. The Android framework provides many views for
you, such as the ListView and the TextView, but developers will need to create the
more complex views that contain animations and special behavior.

The Activity Class

Let’s take a look at the source code for the Hello World application in the file
src/com/example/ExampleActivity.java. In the manifest, you declared this
activity and set it as the main activity to launch for the app. The Activity class is
the main building block of Android applications. It represents a single screen of
the application. Every screen your application contains will have an activity that
represents it. In some cases, the content contained in an activity will be swapped
without changing the activity (when using fragments, which you’ll learn about
later). For effective Android development, it’s critical to understand the life cycle
of the Activity class, because it has the most direct effect on the user experience.

Tip:  Even when you plan to set the text of a TextView in code,
it’s a good idea to declare a default string. That way, you can see
what your layouts will look like with full text.

Android UI Basics  17

package com.example;

import android.app.Activity;

import android.os.Bundle;

public class ExampleActivity extends Activity {

	 /** Called when the activity is first created. */

	 @Override

	 public void onCreate(Bundle savedInstanceState) {

		 super.onCreate(savedInstanceState);

		 setContentView(R.layout.main);

	 }

}

Android activities use a callback structure for creating UI events. The framework
calls the appropriate overridden method during the creation or destruction of the
activity. In the example activity, only a single method is implemented: onCreate.
This method is called when an activity is first created. Typically this is where the
setup of the activity takes place. This is where you create your views and set up
any adapters you need to load your data. It’s not strictly necessary to override any
of the activity methods but onCreate.

The example just sets the view for the activity. It does this by calling
setContentView(R.layout.main). This references the R.java file that the Android
developer tools built for you. In this case, it tells the system to load the main.xml
file located in one of the layout directories. The Android runtime selects the most
appropriate main.xml file (there is only one in this case) and loads it.

Tip:  All Android callbacks occur on the main, or UI, thread.
It’s important to remember not to block this thread. Take care

to perform long-running operations on a different thread, or the UI will
become unresponsive.

18  Chapter 1  Getting Started

The R.java file allows you to reference the generated ID of resources stored in
the res/ folder. To reference layout files, use R.layout.file_name; to reference
strings, use R.string.string_name; and so on.

Activities are short-lived objects. They are created and destroyed frequently.
Each time the user rotates their phone, the activity that is currently displayed is
destroyed and re-created. In addition, the Android system may destroy an activity
if the device is running short of memory or resources. It’s important to design your
activities with the understanding that they can be killed at any time.

Take care to save any state the user might value. If your activity is destroyed,
you don’t want to frustrate your users by making them re-enter text. You will learn
more about how to save activity states in the next chapter.

Hardware Buttons

Android devices prior to version 3.0 have four hardware buttons: Home, Back,
Menu, and Search. Android version 3.0 and above have made the hardware buttons
optional. In their place, Android presents onscreen software buttons that replicate
the functionality of hardware buttons (Figure 1.10).

The Home button takes the user to the phone home screen. It’s not generally
available to applications, unless the app is a home-screen replacement.

The Back button is meant to navigate back in the Android activity stack. This
allows the user to easily jump into an app and them immediately return to the
previous screen.

Figure 1.10  Android tablet
software buttons

Tip:  To ensure that your app is a good Android citizen, always
allow the user to return to a previous application if they have
jumped straight into your app (for example, by pressing a notification or
handling an intent created by another application). Don’t force the user to
back out of many screens of your app to return to their previous task.

Android UI Basics  19

The Menu button displays a context-dependent list of options (Figure 1.11). Use
the options menu for displaying infrequently used options for your application.
On Android tablets and phones running version 3.0 or greater, this button is not
available, and options are instead presented on the action bar. You’ll learn about
the differences between Android 4.0 devices and previous versions of Android in
a later chapter.

Figure 1.11  The options menu
on the Android home screen

Tip:  It is often difficult for users to discover features hidden
behind the Menu button. Carefully consider your application’s

needs, and provide space in your layout for all common operations that
the user will need to take.

20  Chapter 1  Getting Started

Finally, the Search button exists to provide a quick interface for launching a
search on Android. Not all applications use this button, and in many applications,
pressing this button does nothing.

In addition to these buttons, it is also possible to perform an alternative action
on some hardware buttons. These actions are activated by long-pressing on the
buttons. For example, long-pressing the Menu button will activate the software
keyboard. Your application can take advantage of this feature to provide filtering
in lists.

Note:  Not all Android devices have all of these buttons. In particular,
Android 4.0 devices omit the Search button, making it impossible for users
to search in applications. Take care to evaluate the necessity of
search to your application, and provide a button in your UI if search is
an essential feature.

Android UI Basics  21

Tools

The Android SDK includes a suite of tools to assist in developing your apps. The
suite consists of SDK tools and platform tools. The SDK tools, including ADT, are
platform independent and are used regardless of which Android version you are
developing against. The platform tools are specific to Android versions and are
generally installed when updating the SDK to a new version. Let’s focus on the SDK
tools, specifically those used to develop the UI of an Android app.

Android Developer Tools

The primary tool for developing Android apps is the Eclipse IDE using the ADT plugin.
Eclipse is a powerful, multi-language development environment with features such
as code completion, inline documentation, and automatic refactoring. You can use
Eclipse to develop your application, debug it using the standard Eclipse Java debugger,
and even sign a release package for publishing on the Android Market. There are many
tools included in ADT, and you should familiarize yourself with all of them. Here,
I’ll focus on the tools that aid in creating the user interface of Android applications.
Chief among these is the graphical layout editor.

The Graphical Layout Editor
The graphical layout editor allows you to drag and drop views to create your UI. In
early versions of ADT, the graphical layout editor was sparse and not very helpful.
Luckily, the latest version is quite powerful and can be used to create complex
layouts containing compound components and animations.

Figure 1.12 shows the various components of the graphical layout editor.

1	 The Configuration drop-down menu lets you change the way the layout
is displayed. This is a quick way to view your UI for different hardware
configurations, such as phones and tablets.

2	 The Canvas displays the current layout as it will appear on your specified
device configuration. The layout includes a set of context-specific buttons
for quickly changing the parameters of selected views. You can drag views
from the Palette and drop them here to build the UI. You can right-click
components to get a context-specific list of available configurations. You
can also use this list for refactoring the UI into reusable components.

22  Chapter 1  Getting Started

1

23

4

5

3	 The Palette contains the basic building blocks of Android user interfaces.
This is where you can find the basic layout containers, the form controls
(including buttons and text inputs), and even advanced features like transi-
tion animations. You can drag each of these components onto the Canvas to
create your UI. When you drag components onto the Canvas, they will snap
to the edges of the existing blocks, helping to align your layout.

4	 The Outline displays an overview of your layout, with all components listed
in a hierarchy. This makes it easy to see how the components are nested. It
also makes finding hidden or invisible components easier. You can use this
view to quickly reorder the components of your layout.

5	 At the bottom of the graphical layout editor are tabs for switching to a
standard XML view of your UI. While you can accomplish a lot using the
graphical layout editor, it’s recommended that you tweak your final layouts
by hand-coding the XML.

Figure 1.12  The graphical
layout editor

Tools  23

The graphical layout editor is very powerful, and you should spend some time
getting to know the options available within it. Let’s experiment with the editor
by adding a few buttons and text boxes to the layout.

1.	 In the Eclipse Package Explorer, expand the res/layout folder of the project.

2.	 Right-click the file named main.xml and select Open With > Android Layout
Editor (Figure 1.13).

This will display the graphical layout editor. You may need to set up a device
configuration before you can start editing. At the top of the window are the
controls for specifying the Android version, theme, locale, screen size, and
orientation of the device.

3.	 Configure the options as seen in Figure 1.14. You may need to close main.xml
and reopen it for the changes to take effect.

Figure 1.13  Package Explorer
pane showing the res/
folder (top)

Figure 1.14  The device config-
uration editor of the graphical
layout editor (bottom)

24  Chapter 1  Getting Started

4.	 Now try dragging a TextView onto the layout, just below the existing
TextView.

Notice that you can place the view only above or below the existing view.
Remember the LinearLayout container from before? It was set up with a
vertical orientation, so you can arrange views only vertically within it. Now
try changing the size of the TextView.

5.	 Make it fill the width of the window.

6.	 Add a Button below your newly created TextView, and expand it to fill the
width of the window.

You should now have something that looks like Figure 1.15. As you can
see, the graphical layout editor makes it possible to quickly create complex
layouts with very little effort.

Figure 1.15  Hello World layout
with an extra text view and button

Tools  25

Android Virtual Devices

Android is designed to run on a wide range of hardware. It’s important to test your
code extensively before release to ensure that your app is compatible with most
Android devices. This is where the Android Virtual Devices, or AVDs, come in.
An AVD is an emulated Android device. It’s not just a simulator; it actually runs
the full Android framework, just as an actual device would. This is an important
distinction, and it makes the emulator a far better representation of real-world
devices than a simulator.

Because AVDs are emulated devices, they run the standard Android graphics
stack. This can be very slow for high-resolution AVDs such as tablets. Google is
working on improving this, but for now it’s recommended to test your layouts
in the graphical layout editor and only use the emulator for final verification. Of
course, you can always use an actual Android device.

You already created an AVD when you ran the Hello World application. You did
this using the AVD Manager. Using the AVD Manager, you can create a range of
emulated devices with different hardware characteristics, including

JJ Screen size and default orientation

JJ Hardware support, such as accelerometers and gamepads

JJ The Android OS version

JJ SD card storage, emulated using your hard disk

In addition, many handset manufacturers make device-specific AVDs available
to aid in testing on their hardware. You should create a range of virtual devices
and test on all of them to ensure that your application has maximum device
compatibility.

Tip:  The emulator is useful for testing your app, but it cannot
emulate all possible hardware features. For example, there is no

support for emulating OpenGL graphics, Near Field Communication (NFC),
or even Wi-Fi. To ensure maximum compatibility, you should always test
your final application on a real hardware device.

26  Chapter 1  Getting Started

Hierarchy Viewer

When developing any application, it is important that the app feel very responsive.
Often, an unresponsive app is due to slowdowns in drawing the UI. To assist in
debugging these situations, Android includes a tool called the Hierarchy Viewer.
As the name suggests, this program will display the full layout hierarchy of your
app, allowing you to optimize and debug potential issues.

Use the Hierarchy Viewer by running the tools/ hierarchyviewer executable
in the Android SDK directory.

1.	 Run hierarchyviewer now and select the Hello World app.

2.	 Click the Load View Hierarchy button, and you will see something like
Figure 1.16.

Figure 1.16  The Hierarchy
Viewer displaying the modified
Hello World app layout

Note:  For security reasons, the Hierarchy Viewer will connect only to
devices running developer versions of Android. In practice, you will
be able to use Hierarchy Viewer only with the emulator or a phone
that has been hacked to enable root access.

Tools  27

There are four primary components in the Hierarchy Viewer:

JJ The left sidebar displays all connected devices, along with the running
processes on each device. This is where you select your application.

JJ The Tree View displays a graphical representation of your UI layout. You
can see exactly how many components make up your layout. Large layouts
with many nested components will take much longer to draw than simple
layouts. If you look closely, you will see colored circles on some components.
These give you an at-a-glance indication of the time taken to draw the view
and its children. Green is faster, red is slower. You can click a view to get
more information about its draw time, along with a small preview of the
view as it appears onscreen.

JJ The Tree Overview provides a quick zoomed-out view of the entire hierar-
chy, giving you a quick feel for the complexity of the layout. This pane also
provides quick navigation around the Tree View pane.

JJ The Layout View shows an outline of the actual displayed application. This helps
to orient the view components to the actual displayed UI. By clicking around in
this pane, you can see which components make up each portion of the display.

If you look closely at the hierarchy displayed for the Hello World application,
you may notice that it contains more components than are listed in the main.xml
file. Here’s a quick explanation:

JJ The topmost component is the PhoneWindow. This represents the display
of the device. It is always present and is the base container for the entire
display, excluding the notification bar.

JJ There is a LinearLayout directly below the PhoneWindow. This is not the
LinearLayout in our main.xml. Rather, this layout is drawn by the system
to display the title bar above the content. Notice the extra FrameLayout and
TextView? That is the title bar of the app. If you run the app with no title
bar, then this layout would be removed.

JJ The other FrameLayout is the application. This layout contains a child
LinearLayout. The child LinearLayout is from the main.xml file in the
example. It contains the two TextViews and the Button you created earlier
in the Hello World app.

28  Chapter 1  Getting Started

The hierarchy view is especially useful for debugging nested LinearLayouts. If
you start creating layouts with many layers of LinearLayouts, consider switching
to a RelativeLayout to reduce complexity.

Taking Screenshots with DDMS

The Dalvik Debug Monitor Server (DDMS) is a powerful tool for capturing the state
of your application, including heap usage, running thread counts, object alloca-
tions, and logs. While these features are outside the scope of this book, DDMS also
has a very important function that all app developers will need: It allows you to
take screen shots of your application. To run DDMS, in Eclipse choose Window >
Open Perspective > Other > DDMS. Select your device in the Devices pane, then click
the camera icon (Figure 1.17). This will open the Device Screen Capture window.
From here you can rotate the image, refresh it to recapture the screen, and save it.

Figure 1.17  The DDMS Devices
pane. To take a screenshot, click
the camera icon.

note:  Android version 4.0 and above has the ability to take
screenshots without using DDMS. Simply hold the power and volume
down buttons at the same time, and a screenshot will be saved to your
device image gallery.

Tools  29

Other Tools

In addition to the common Android UI tools, there are some lesser-known tools
that are useful for perfecting your app UI.

draw9patch
Images used in Android applications are often stretched to fit the available area
on a device. This can distort the image, resulting in ugly graphics. Android uses
an image called a 9-patch to handle scaling without distortion. For example, all
buttons in Android are 9-patch graphics that stretch but maintain proper round-
ing on their corners (Figure 1.18). A 9-patch image is simply a standard image file
with an additional 1-pixel border. By coloring the pixels in this border black, you
can indicate which parts of the image should stretch as the image is scaled up. The
Android SDK provides the draw9patch command-line tool for creating these images.

layoutopt
Optimizing layouts by hand can be a tedious job. The layoutopt tool can do some
of the work for you by analyzing your layouts and displaying inefficiencies in
the view hierarchy. This command-line tool takes a list of XML layout files, or a
directory of files, and outputs the results of its analysis. While this isn’t sufficient
for debugging complex hierarchies, it can help in providing a first pass at fixing
layout slowdowns.

Figure 1.18  An example of the
Draw 9-patch tool. The button
can stretch, but the corners
remain the same.

30  Chapter 1  Getting Started

Android Asset Studio

Creating image resources for different screen densities is necessary but
tedious. Luckily, there is an excellent tool that will create these resources for
you. Called the Android Asset Studio, this tool will take an uploaded image
and create density-specific versions. It can also be used for creating launcher
icons, menu bar icons, action bar icons and tab icons. For now, you can find
the Android Asset Studio at this address:

http://android-ui-utils.googlecode.com/hg/asset-studio/dist/index.html

The Android Asset Studio is part of the Eclipse ADT plugin and can be
accessed by selecting File>New>Android Icon Set.

Monkey
When creating applications, it’s important to thoroughly test every aspect of the
user experience. It can be difficult to truly test a UI, because the developer of the
app is familiar with the interface and won’t try to do things that are unexpected
or just plain weird—things like pressing multiple buttons at the same time while
rotating the phone. This is where the Monkey tool comes in. The Monkey runs a
specified number of iterations and randomly hits areas of the screen, changes the
orientation of the device, presses volume and media keys, and generally just does
crazy things. This is often a simple way of rooting out unexpected errors.

Tools  31

http://android-ui-utils.googlecode.com/hg/asset-studio/dist/index.html

Wrapping Up

This chapter introduced the Android framework by having you create the standard
Hello World application and explore the tools available for building user interfaces
on Android. Along the way, you learned that

JJ The AndroidManifest.xml file declares all the features used by your applica-
tion. Use the manifest to prevent your app from running on unsupported
hardware.

JJ Images and layouts are separated into folders that allow the Android system
to select the best resources for the device’s current configuration at runtime.

JJ The Activity class is the primary building block of Android applications.
Understanding its life cycle is key to building great apps.

JJ The graphical layout editor provides a quick and easy way to create your
applications.

JJ You should use the Hierarchy Viewer tool to debug performance issues in
your views.

JJ You can use the DDMS tool to take screenshots of your application.

32  Chapter 1  Getting Started

This page intentionally left blank

2

Creating Your
First Application

35

Over the course of this book, you’ll develop a simple

time-tracking app. This app will eventually have all the

features you would expect in a time-tracking application:

a Start/Stop button, a running clock indicator, lists of previous

times, editing capabilities, and a home-screen widget for fast time

entry. But to begin, you’ll create a basic app with a few buttons, a

text view, and a list of times. In this chapter you’ll learn the differ-

ent layout containers and when to use them; explore XML options

for getting the interface just right; learn the proper way to load

data and display it as a list; and dive deep into the Activity class,

a fundamental part of Android UI development.

To get started, create a new project called TimeTracker. This will be your app
project throughout the book. In this chapter, you’ll work through some simple
layouts and build a minimally functional application. Figure 2.1 shows what you’ll
have built by the end of this chapter.

This book won’t cover much of the back-end logic and will instead focus on
the user interface code. However, all the code is available on the book’s website,
www.peachpit.com/androiduifundamentals, for you to download.

Figure 2.1  The time-tracking
app you’ll build by the end of
this chapter

Creating an App

36  Chapter 2  Creating Your First Application

www.peachpit.com/androiduifundamentals

Getting Started with
Android Views

An Android application’s UI is composed of a hierarchy of View objects. Each view
represents an area on the screen. A Button, for example, represents a rectangular
area that can be pressed by the user. Android apps arrange views in layout contain-
ers, also known as ViewGroups. Views have attributes that specify their look and
arrangement within the container. The Android framework provides many views
and containers. Figure 2.2 shows a few of the common view elements available.
However, there are many more, and you should spend some time using the graphical
layout editor to discover all the available views. It’s also possible to create custom
views by subclassing a View class. You’ll learn more about this later in the book.

Common View Attributes

To control how the views of your UI are arranged and displayed onscreen, Android
provides a number of View attributes—you saw some of them in Chapter 1. View
attributes exist as fields in View classes and are accessed using getter and set-
ter methods. They are also specified as XML attributes in XML layout files. The

Figure 2.2  Some common form
widgets available to your app

Getting Started with Android Views  37

attributes follow the form android:attribute_name, where attribute_name is
the actual name of the attribute. All system attributes use the android: prefix.
Here, we’ll go over the most important attributes and behaviors, covering a few
confusing aspects along the way.

Height and width
Every view in Android is required to have a height and width. These are specified
using the layout_height and layout_width attributes. Values for width and height
are specified by using exact dimensions or by using the special symbolic values
wrap_content or match_parent. Android API version 8 renamed fill_parent to
match_parent, but fill_parent is still allowed for backward compatibility. You
should use match_parent in your layout files because fill_parent is now deprecated.

With wrap_content, the view will take only as much space as it needs to con-
tain any content inside it. Using match_parent will make the view expand to fill
the entire inside of its parent view. Alternatively, specifying an exact dimension
will make a view take exactly that much space onscreen. So, for example, you can
create a view with a width of 48px, and it will take exactly 48 pixels of space on the
display. In general, you’ll find that match_parent and wrap_content are the most
useful for creating your layouts.

It can be tempting to use exact dimensions when creating your layouts. You should
avoid this urge and instead use the more flexible wrap_content and match_parent.
For example, you could have two views: one taking up a quarter of the screen and
the other taking the remaining space. This will make your views flexible enough to
fit any screen size.

note:  Android uses special dimension units called density-independent
pixels, or dp. This is one way that Android handles varying screen sizes

and densities. You’ll learn more about this in Chapter 3. For now, know
that you should almost always use dp units when specifying the size of

your UI elements.

38  Chapter 2  Creating Your First Application

Margin

Padding

Margins and padding
When creating your layouts, you’ll want to add space around your views. This
increases the usability of your app by increasing the target size of tappable areas.
It can also add visual appeal to your app. Android uses two attributes for creating
the space around views: layout_margin and padding. Margins create space on
the outside of a view, which will separate the view from the surrounding views.
Padding creates space inside a view. Figure 2.3 shows the difference between them.
You can use attributes to set the dimensions of padding and margin for all sides of
a view or for just a single side.

Gravity
By default, Android will place views on the left side of the screen. To change this,
you use the gravity attribute. The gravity attribute controls the default position
of a view’s children inside that view. For example, you can use the gravity attri-
bute on a linear layout to position its child views on the right side of the screen. By
default, layout containers have gravity set to left. Most other views have their
default gravity set to center.

Figure 2.3  The difference
between padding and margin

Note:  When setting gravity, you must account for the size of the views.
The gravity attribute only positions child views inside the parent view.
If the parent view takes up half the screen, then gravity will position
children only in that half of the screen. If you are trying to use gravity
and not getting the results you expect, check the size of your views.

Getting Started with Android Views  39

Similar to the gravity attribute is the layout_gravity attribute. While gravity
affects the position of the children of a view, layout_gravity specifies the posi-
tion of a view to its parent. Taking the example of a linear layout again, if you keep
the gravity at its default value, all views will be positioned on the left side of the
screen. You can then set the layout_gravity attribute of one of the child views
to right, and that single view will be positioned on the right side of the screen.
Figures 2.4, 2.5, and 2.6 show three screens: default gravity, gravity set to right,
and one button’s layout_gravity set to right.

More options
There are many more optional view attributes. Some of them are specific to par-
ticular views, like setting the source of an ImageView or the text of a TextView.
Some are available on every view but have a default value, like the background
used for images. Some can even be used to create animations for your views. You
should explore these attributes and get familiar with the basics. You’ll learn about
more attributes throughout this book, but there are too many to cover them all.

Figure 2.4  A linear layout
with default gravity

Figure 2.5  A linear layout
with gravity set to right

Figure 2.6  A linear layout
with default settings; the first
button has layout_gravity set
to right.

40  Chapter 2  Creating Your First Application

Arranging Views

The Android view hierarchy starts with a layout container. These containers hold
the child views and arrange them relative to each other. There are several container
types with different characteristics, optimizing them for different situations.

FrameLayout

The simplest layout container is the FrameLayout. This container does not arrange
child views at all. It simply presents each view, one on top of the other. The order of
the views is based on their declaration in the XML file: Views declared later in the
file are drawn on top. Use this layout whenever you want to create overlapping views.

FrameLayout is especially useful when creating customized tappable elements.
You can use the FrameLayout to pair a button with an ImageView, setting the button
background to be transparent. This gives you more control over the padding and
scaling of button images than just setting a background does.

TableLayout

The TableLayout displays data in a tabular format (Figure 2.7). It arranges sub-
views into rows and columns, with each row contained in a TableRow container.
A TableLayout will have as many columns as the TableRow with the most cells.
Unlike the children of most views, the children of a TableLayout cannot specify a

Figure 2.7  An example of a table layout.
Cell borders are not normally displayed.

Arranging Views  41

layout_width. This is handled by the TableLayout and will be set for you. Cells can
be marked to span multiple columns and expand or shrink to fill available space.

You should use this layout only when displaying a table of data. In other cases,
use a LinearLayout, a RelativeLayout, or the new GridLayout.

LinearLayout

You saw the LinearLayout in Chapter 1. You’ll be using this container a lot in your
apps. As the name implies, this container arranges child views in a single direction,
vertically or horizontally. The orientation attribute sets the direction for a linear
layout’s child views. Child views specify how much space they will consume within
the linear layout. They do this by setting a layout_weight. This parameter specifies
the relative weight of one view versus the other views. By default, all views have
a weight of 0. This means they will take up exactly as much space as they need to
contain their content. Setting a weight higher than 0 will make a view expand to
fill the remaining space in the layout. The relative value of the weight versus the
weight of other views will determine how much space a particular view consumes.

The buttons in Figure 2.8 are contained in a linear layout with orientation set
to vertical. Each button takes up as much space as needed to contain its content.
The top button has its weight set to 0 and is taking up only the space needed to
display its content. The other two buttons have their weights set to 1 and 4, so in
addition to their normal size, they expand to fill the remaining space. The bottom
button has a higher weight and consumes more of the available space. It actually
takes four-fifths of the remaining space, leaving one-fifth for the third button
(1 + 4 = 5). Using layout weights allows you to create proportionally arranged views,
greatly increasing the flexibility of your layouts.

42  Chapter 2  Creating Your First Application

Figure 2.8  A linear layout with three
buttons demonstrating layout_weight

Note:  A somewhat confusing aspect of using layout_weight
is its relationship to the layout_height and layout_width
attributes. The weight will generally override the height and
width, but not always. If you plan to use the layout_weight
attribute, set the corresponding height or width to 0dp. That
way, the view size will be controlled by the weight and nothing else.

Arranging Views  43

The linear layout is simple to use and perfect for the first version of the
TimeTracker app. Remember Figure 2.1? Here is how you create that UI:

1.	 Open the TimeTracker project you created earlier.

2.	 Open the res/main.xml file that was created automatically. Replace its
content with the following XML layout:

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/
p apk/res/android”

	 android:layout_width=”match_parent”
	 p android:layout_height=”match_parent”

	 android:orientation=”vertical”>

	 <TextView android:id=”@+id/counter” android:text=”0”

		 android:layout_height=”wrap_content”
		 p android:textAppearance=”?android:
		 p attr/textAppearanceLarge”

		 android:gravity=”center” android:padding=”10dp”

		 android:layout_width=”match_parent”
		 p android:textSize=”50dp”></TextView>

	 <LinearLayout android:layout_height=”wrap_content”

		 android:layout_width=”match_parent”
		 p android:orientation=”horizontal”>

		 <Button android:text=”@string/start”
		 p android:id=”@+id/start_stop”

			 android:layout_height=”wrap_content”
			 p android:layout_width=”0dp”

			 android:layout_weight=”1”></Button>

		 <Button android:text=”@string/reset”
		 p android:id=”@+id/reset”

			 android:layout_height=”wrap_content”
			 p android:layout_width=”0dp”

44  Chapter 2  Creating Your First Application

			 android:layout_weight=”1”></Button>

	 </LinearLayout>

	 <ListView android:layout_weight=”1”
	 p android:layout_width=”fill_parent”

		 android:layout_height=”0dp”
		 p android:id=”@+id/time_list”>

	 </ListView>

</LinearLayout>

This XML code uses a linear layout to arrange three children: a text view to
hold the current time, another linear layout that will hold the two buttons, and
a list view that displays a list of all previous times. The buttons are arranged
using a second linear layout with orientation set to horizontal. Note that
you set the layout_width of both buttons to 0dp and the layout_weight to 1.
This makes the buttons expand to fill the width of the layout and divide that
space equally. The list view will display a list of times with a custom layout for
each row. You’ll learn more about using list views in the next section.

RelativeLayout

The other common layout container is the RelativeLayout. Relative layouts are
more flexible than linear layouts, but they are also more complex. As its name
implies, the relative layout arranges child views based on their position relative
to the other views and to the relative layout itself. For example, to place a text
view just to the left of a button, you would create the text view with the attribute
toLeftOf=”@id/my_button”. This flexibility allows you to create very complex UIs
within this one container.

Tip:  Views that reference other views in a relative layout must
be declared after the referenced view.

Arranging Views  45

Figure 2.9 shows some buttons arranged in a relative layout. Buttons 1, 2, 3, 4,
and 5 are positioned relative to the parent RelativeLayout container. The corner
buttons have attributes aligning them with the top, bottom, left, and right of the
relative layout. The center button is aligned with the center of the relative layout,
and the remaining buttons are positioned relative to the center button. Table 2.1
lists the attributes available for views inside a RelativeLayout, as well as how
they are used.

Figure 2.9  A relative layout
with buttons arranged in
corners and center

Note:  The child views of a relative layout are arranged in the order they
are declared. So if a view is declared to be in the center of the layout,

all subsequent views aligned to that view would be arranged based on
the center of the view.

46  Chapter 2  Creating Your First Application

Table 2.1  XML Attributes for RelativeLayout

Attributes Description

layout_alignParentTop, layout_alignParentBottom,
layout_alignParentRight, layout_alignParentLeft

These attributes will align the view with the parent. Use
these to fix the view to the sides of the RelativeLayout
container. The value can be true or false.

layout_centerHorizontal, layout_centerVertical,
layout_centerInParent

Use these attributes to center a view horizontally or
vertically or to directly center a view within the parent
RelativeLayout. The value can be true or false.

layout_alignTop, layout_alignBottom,
layout_alignRight, layout_alignLeft

These attributes are used to align the view with another
view. Use these to line up views in the layout. The value
must be the id of another view.

layout_alignBaseline This attribute sets all the edges of a view to align with the
specified view. This is useful when you have overlapping
views and need them to exactly match. The value must be
the id of another view.

layout_above, layout_below, layout_leftOf,
layout_rightOf

Use these attributes to position a view relative to another
view. This attribute sets rules on the view to ensure that it
never crosses the boundary set by the edge of the target
view. The value must be the id of another view.

It can be tricky to master using the relative layout, but it will pay off when you
create more-complex UIs. Remember that if you find yourself creating multiple
nested linear layouts, you should consider using a relative layout to optimize the
drawing of your UI.

Note:  You cannot have a circular dependency in a relative layout.
So, for example, you cannot set the width of the RelativeLayout to
wrap_content and use alignParentTop on one of the child views. This
will generate an error, and your R.java file will not be generated.

Arranging Views  47

GridLayout

Android 4 brought a new layout container called GridLayout. As its name implies,
it arranges views into a grid of columns and rows. This layout makes it easier to
create the common “dashboard”-style UI seen in apps like Google+. You would
normally create such a UI using a TableLayout, but GridLayout allows you to
create the same layout with a flatter hierarchy. This improves performance by
reducing the number of views that Android has to draw. GridLayout has also been
designed to support drag-and-drop creation of UIs using the graphical layout edi-
tor. Developers will be able to create complex and efficient layouts just by using a
GridLayout and the layout editor.

Figure 2.10 shows an example layout created using the GridLayout container.
In this layout are four buttons arranged into rows and columns. The XML to cre-
ate that layout is:

Figure 2.10  GridLayout pro-
duces complex layouts without
nested containers.

48  Chapter 2  Creating Your First Application

<?xml version=”1.0” encoding=”utf-8”?>

<GridLayout xmlns:android=”http://schemas.android.com/
p apk/res/android”

	 android:layout_width=”match_parent”

	 android:layout_height=”match_parent”

	 android:columnCount=”3” >

	 <Button

		 android:id=”@+id/button1”

		 android:layout_column=”1”

		 android:layout_row=”1”

		 android:text=”Button” />

	 <Button

		 android:id=”@+id/button2”

		 android:layout_column=”1”

		 android:layout_gravity=”bottom”

		 android:layout_row=”2”

		 android:text=”Button” />

	 <Button

		 android:id=”@+id/button3”

		 android:layout_column=”2”

		 android:layout_row=”2”

		 android:text=”Button” />

	 <Button

		 android:id=”@+id/button4”

		 android:layout_column=”2”

		 android:layout_row=”3”

		 android:text=”Button” />

Arranging Views  49

Unlike a TableLayout, a GridLayout does not need explicit TableRow elements.
The buttons themselves declare the rows and columns in which they should appear.

By default, this layout will not include any space between the buttons. To add
space, you can use the traditional margin and padding parameters, or you can
use a new view that was introduced in Android 4: Space. This view simply adds
a gap between the elements of a layout. When using drag and drop to create a
layout in the graphical layout editor, spaces are automatically inserted to achieve
the desired appearance. Here are the Spaces created by the layout editor for the
layout in Figure 2.10:

<Space

		 android:layout_width=”58dp”

		 android:layout_height=”1dp”

		 android:layout_column=”0”

		 android:layout_gravity=”fill_horizontal”

		 android:layout_row=”0” />

	 <Space

		 android:layout_width=”128dp”

		 android:layout_height=”1dp”

		 android:layout_column=”1”

		 android:layout_gravity=”fill_horizontal”

		 android:layout_row=”0” />

	 <Space

		 android:layout_width=”134dp”

		 android:layout_height=”1dp”

		 android:layout_column=”2”

		 android:layout_gravity=”fill_horizontal”

		 android:layout_row=”0” />

50  Chapter 2  Creating Your First Application

	 <Space

		 android:layout_width=”1dp”

		 android:layout_height=”83dp”

		 android:layout_column=”0”

		 android:layout_gravity=”fill_horizontal”

		 android:layout_row=”0” />

	 <Space

		 android:layout_width=”1dp”

		 android:layout_height=”180dp”

		 android:layout_column=”0”

		 android:layout_gravity=”fill_horizontal”

		 android:layout_row=”2” />

	 <Space

		 android:layout_width=”1dp”

		 android:layout_height=”173dp”

		 android:layout_column=”0”

		 android:layout_gravity=”fill_horizontal”

		 android:layout_row=”3” />

</GridLayout>

Arranging Views  51

Displaying a List

One of the most common view types you’ll use to develop an app is the ListView.
This view presents a vertically scrolling list of items. Each row generally holds some
text but will often include other views, such as ImageViews and Buttons (a good
example of this is the Contacts app). Use a ListView whenever you have a list of
data to present to the user. This view is so common that Android actually provides
built-in activities that just display a list.

ListActivity

A ListActivity will bind to a default view containing a ListView. There is no need
to call setContentView in the activity’s onCreate method, because the ListActivity
is already set to a ListView by default (though you can define a custom view if you
choose). The ListActivity class also contains a few convenience methods for
retrieving and setting the list data and for handling item selection. Although it’s
not necessary to use a ListActivity to display a list, you should consider using it
whenever you want to display a list of data to the user.

Android Default Layouts

The ListActivity actually sets its content to a special layout built into the
Android OS. This layout contains a single ListView as its content. There are
other built-in layouts you can use when creating your app, a number of
which are contained in the android.R.layout class. Here are two that you
could use with a ListView:

JJ android.R.layout.simple_list_item_1 is used to display a single line of
text in a row of a ListView.

JJ android.R.layout.two_line_list_item displays two lines of text per row
of a list.

In addition to the layout files, Android also has built-in styles, menus, draw-
ables, and other useful views. You should explore the Android package for
useful defaults for your app.

52  Chapter 2  Creating Your First Application

XML Layout

Displaying screens of lists is convenient, but sometimes you need to display more
than just a list. In those cases, you can create a standard layout and use a list view
to show the list. List views are defined the same way as other views in Android:

<ListView android:layout_width=”match_parent”

	 android:layout_height=”match_parent” android:id=”@+id/list”>

</ListView>

List views have a few special attributes that you can use for more complex
layouts. The first is the android:entries attribute. Use this attribute when you
have a static, unchanging list of values to populate the list view. Using the entries
attribute, you can simply reference a resource and not have to programmatically
populate the list. Attributes for altering the appearance and behavior of the divid-
ers between rows are also available. In general, you should stick with the defaults
and not deviate from the platform look and feel.

Row layout
Creating the layout for a list row is the same as for an activty: You create an XML
file with a layout container and several views. Each row will contain that layout,
allowing you to set values for text and images. The Android platform provides
several default row layouts. These are generally sufficient for the list views that
you will create. However, you can also create custom layouts for the rows of the
list. To create a custom layout, you simply create a new layout file and use it when
binding data to the list view.

The time-tracking app will require a custom layout for its list view. In the res/
folder, create a new layout file called time_row.xml:

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/
p apk/res/android”

	 android:id=”@+id/time_row” android:orientation=”horizontal”

	 android:layout_width=”match_parent”
	 p android:layout_height=”wrap_content”

Displaying a List  53

	 android:gravity=”center” android:paddingLeft=”10dp”

	 android:paddingRight=”10dp” android:paddingBottom=”20dp”

	 android:paddingTop=”20dp”>

	 <TextView android:id=”@+id/lap_name”
	 p android:layout_height=”wrap_content”

		 android:text=”Lap 1” android:layout_weight=”1”
		 p android:layout_width=”0dp” />

	 <TextView android:id=”@+id/lap_time”
	 p android:layout_height=”wrap_content”

		 android:text=”00:00:00” android:layout_weight=”1”

		 android:layout_width=”0dp” android:gravity=”right” />

</LinearLayout>

This file uses a simple linear layout to display two text views side by side: one
for the name of the session and one for the time. The linear layout uses padding
to create some space between the text views.

Binding Data to the List

The entries attribute of ListView works great if you already know what the list
elements are going to be. But if you want to generate the list dynamically, you’ll
need to set up a list adapter. ListAdapters populate the elements of a ListView
based on some internal data storage. There are ListAdapters for populating the
list using a static map of values (similar to using the XML entries attribute), for
loading rows from an array, and for loading data from a database. A ListAdapter
is a list-specific instance of the Adapter class. Adapters are used to bind data to
views in your UI (you’ll learn more about them later in this book).

When you create a list adapter, you’ll want to override the getView method.
This method is called by the system for each row of the list view. It takes the list
position, any existing layout for that row, and the parent view of the row, and it
expects the row layout view to be returned. For the TimeTracker app, you’ll use
the row layout you created earlier. Create a new class called TimeListAdapter
that extends ArrayAdapter<Long>. Then override the getView method to load the
custom time_row.xml layout for every row of the list view:

54  Chapter 2  Creating Your First Application

public class TimeListAdapter extends ArrayAdapter<Long> {

	 public TimeListAdapter(Context context, int textViewResourceId) {

		 super(context, textViewResourceId);

	 }

	 @Override

	 public View getView(int position, View convertView,
	 p ViewGroup parent) {

		 View view = convertView;

		 if (view == null) {

			 view = LayoutInflater.from(getContext()).inflate
			 p (R.layout.time_row, null);

		 }

		 long time = getItem(position);

		 TextView name = (TextView) view.findViewById(R.id.lap_name);

		 String taskString = getContext().getResources().getString
		 p (R.string.task_name);

		 name.setText(String.format(taskString, position+1));

		 TextView lapTime = (TextView) view.findViewById
		 p (R.id.lap_time);

		 lapTime.setText(DateUtils.formatElapsedTime(time));

		 return view;

	 }

}

Displaying a List  55

This method inflates a custom layout for each row of the list view. Inflating a
layout is the process of converting XML layouts into a set of View objects (you’ll
learn more about this in Chapter 3). As the user scrolls through the list, the system
will call this method to create the rows of the list. Rows that are no longer visible
will be garbage collected. You should take care to prevent needless allocation of
memory in data adapters. Unnecessary garbage collection events are one of the
primary causes of stutter in Android animations. You will learn some tricks for
creating efficient data adapters later in this book.

Loaders

Loading data into a list adapter can be a tedious process: You need to handle things
asynchronously to avoid performing too much work on the main thread; you
need to keep the displayed data fresh by reloading the list adapter when the data
changes; and you have to maintain the data across orientation changes, which
destroy and re-create the activity. To simplify this process, Android 3 introduced
a helper class called Loader. The Loader class takes a lot of the drudgery out of
loading data asynchronously.

The Loader class is available to all versions of Android through the compatibility
package. This package contains implementations of new Android APIs, like loaders
and fragments, allowing you to use them in older versions of Android. You’ll learn
more about loaders and fragments in a later chapter, but for now just remember
that you can simplify the binding of data to views by using the Loader class.

Tip:  Don’t inflate new views unless you need to. In this code,
the view is only inflated if it doesn’t already exist. This is an opti-

mization that prevents unnecessary object creation and garbage collection.

56  Chapter 2  Creating Your First Application

Understanding Activities

Android activities represent the interface to the user. All interaction with users
takes place through activities. As a developer, it’s important that you create a fast
and responsive application that puts the user first. This can be as simple as using
easy-to-read text views or as complex as saving the input to a data field as soon
as the user types a query. Understanding activities is key to creating responsive
and usable applications.

Declaring Activities

All activities must be declared in your application’s manifest file. Failing to do so
will result in your app throwing an exception when it first runs. Here is a sample
activity manifest entry for the TimeTracker app:

<activity android:name=”.TimeTrackerActivity”

	 android:label=”@string/app_name”>

	 <intent-filter>

		 <action android:name=”android.intent.action.MAIN” />

			 <category android:name=”android.intent.category.LAUNCHER” />

	 </intent-filter>

</activity>

The manifest entry contains basic information about the activity, such as its
class name and user label. Notice the “.” in the name attribute? That’s a shortcut
for using the full package name listed in the <application> element. This activity
also declares an intent filter that is used to respond to intents sent by the system.
In this case, it declares that this is the main activity for the app and that it should
respond to the android.intent.category.LAUNCHER intent, which is sent when
an app icon is tapped on the home screen. You should declare intents that launch
activities in the manifest file.

Understanding Activities  57

Understanding the Activity Life Cycle

Activities are short lived—they are continually being created and destroyed. It’s
up to the developer to properly handle these transitions as the user navigates an
app. You create an activity by extending the Activity class and implementing a
series of callbacks that the system calls when your activity transitions between
states. Activities have three basic states, listed in Table 2.2.

Table 2.2  Activity States

State Explanation

Resumed or Running In this state, the activity is focused and visible to the user.
Users interact with your activity while it is in this state.

Paused Your activity is still visible, but it is no longer focused. This
occurs when something has popped up in front of your appli-
cation, such as a dialog.

Stopped Your activity is placed in this state when the user transitions
to a new activity and your activity is no longer visible. The
system will often destroy your activity to reclaim resources
when it is in this state. If all activities of an app are stopped,
the system will kill the entire app process to reclaim resources.

onCreate is called when an activity is first instantiated by the system. You
should always implement this method. You’ll perform basic setup of your activ-
ity in the onCreate method: binding data to the views, setting the layout for the
activity, initiating any threads, and so on. You should also implement onPause. The
onPause method is the first callback triggered when the activity is transitioning
from the foreground; this is the method you should use to save any changes the
user may have entered into your application.

Tip:  The onPause method is where you should save any data the
user would expect to keep. For example, if you created an email

application, any text entered by the user should be saved to your database
during the onPause callback.

58  Chapter 2  Creating Your First Application

Activity starts

Activity is
running

Activity is
shut down

onCreate()

onStart()

onResume()

onPause()

onStop()

onDestroy()

onRestart()

Process
is killed

Activity
comes to the
foreground

Activity
comes to the
foreground

User navigates
back to the

activity

Other
applications

need memory

Another activity
comes to the front

Activity is no
longer visible

You must always call the superclass implementation of activity callbacks that
you implement. If you fail to do so, your activity will throw an exception.

As an activity transitions between the three states, the callbacks of the Activity
class are triggered. Figure 2.11 gives an overview of the callbacks and when they are
triggered. There are two important things to remember about activities: The system
will aggressively destroy your activity when it’s not visible to the user; and the call-
backs all run on the main thread, so you should not perform any long-running or
computationally expensive operations in those callbacks.

Figure 2.11  Activity callbacks
showing the part of the life cycle
from which they are called

Understanding Activities  59

The TimeTracker app will need to override the onCreate method for now. You’ll
also override onDestroy when you create the timer logic. Later, when you imple-
ment the database, you will want to override the onPause method to save any data
the user has entered.

1.	 In the com.example package, create a file called TimeTrackerActivity.java:

public class TimeTrackerActivity extends Activity {

2.	 Override the onCreate method and set up the views using the following code:

@Override

	 public void onCreate(Bundle savedInstanceState) {

		 super.onCreate(savedInstanceState);

		 setContentView(R.layout.main);

		 // Initialize the timer

		 TextView counter = (TextView) findViewById(R.id.counter);

		 counter.setText(DateUtils.formatElapsedTime(0));
	 if (mTimeListAdapter == null)

			 mTimeListAdapter = new TimeListAdapter(this, 0);

		 ListView list = (ListView) findViewById(R.id.time_list);

		 list.setAdapter(mTimeListAdapter);

	 }

}

This code sets the XML layout file for your activity by calling setContentView.
The setContentView method inflates the XML layout and adds it to the activity view
hierarchy. Next, the findViewById method retrieves a reference to the TextView
that will hold the current time. It sets the default time value using a DateUtils
format. Finally, the ListAdapter that you’ll use to load data into the ListView is
created and set on the ListView instance.

You should call setContentView in your activity’s onCreate method. You may
call it as many times as you want in onCreate, but only the last call will execute.
Once the view hierarchy has been loaded, you cannot call setContentView again.
However, you are still free to update the layout using Java APIs.

60  Chapter 2  Creating Your First Application

Tap
Button

Tap
Item

Tap
Back

Activity 3

Understanding Tasks and the Back Stack

Android applications are typically constructed using a series of activities. The
system groups these activities into tasks. Each task represents a set of activities
as a stack, with activities being pushed onto the stack when the user navigates
away from them and being popped off the stack when the user navigates back to
them (Figure 2.12). This is called the back stack. New tasks are created when the
user opens a new activity that is not associated with the current activity. Every
task has its own back stack.

A Note about the Main Thread

The main, or UI, thread for an Android app is where all UI events are trig-
gered. Every button you press generates an event that is dispatched via the
main thread. For this reason, it is very important to use worker threads for
handling long-running operations. However, updates to the UI are not thread
safe. If you try to update the UI from one of your worker threads, an excep-
tion will result. Android provides a number of APIs for dealing with this:

JJ The Activity.runOnUiThread method

JJ The View.post, View.postDelayed, and View.postInvalidate methods

JJ The AsyncTask class

JJ Message handlers

If you need to update the UI of your application, make sure you either do
it from the UI thread or use one of these APIs. You’ll learn more about the
AsyncTask class later in this chapter.

Figure 2.12  The back stack.
Pressing the Back button will
pop the most recent activity
off the stack.

Understanding Activities  61

Tap
Item

Tap
Home

Open
New
App

Tap
Button

Task 1
Activity 2

Task 2
Activity 2

Activity

Task 1
back stack

Task 1

Activity 1

Task 1

Activity 2

Activity 1

Task 1

Activity 2

Activity 1

Task 1

Activity 2

Activity 1

Task 1 moved
to the

background

Task 2
back stack

Task 2

Activity 1

Task 2

Activity 2

Activity 1

New task
created

A simple example will demonstrate (Figure 2.13).

1.	 A user opens an application. This creates a new task. The example is a
ListView.

2.	 The user navigates to a new activity by pressing a list item.

3.	 The user presses Home, then opens a new app. This creates a second task,
containing the main activity of the new app.

4.	 The user navigates to a new activity in this task, again by pressing a list item.

There are now two tasks and two back stacks. The user can switch between
the two tasks by pressing Home and tapping one of the application launchers.
Alternatively, on Android 4.0 and later, users can press the task switcher button
to switch tasks. The Back button will act on the active stack and pop the topmost
activity from the task the user is viewing.

Figure 2.13  Two tasks and
their back stacks

62  Chapter 2  Creating Your First Application

It is possible for the same activity to appear multiple times in the back stack.
This occurs when the same activity can be started from multiple places. You should
watch for these situations, because you could easily consume large amounts of
memory storing multiple copies of the same activity. This will also be annoying to
users, because they will have to press Back repeatedly to exit your app.

Handling Configuration Changes

A common situation that Android apps face is handling device configuration
changes. What’s a device configuration change? The most basic one is a change
in orientation caused by rotating the device. This changes the screen from portrait
to landscape. This configuration change results in your current activity being
destroyed and re-created. Remember that activities are short lived and that even
something as simple as rotating a device will result in a new activity being created.

How do you maintain the input data and state of your app when your activity
is destroyed and re-created? You would normally save data in the onPause method
of your activity. However, this is intended only for application data that the user
might find important. In this case, you want to save data that is relevant only to
the existing activity instance. To do this, you save the current state of your activity
in the onSaveInstanceState callback. Unlike onPause, onSaveInstanceState is
not always called by the system. It’s only called if the activity is destroyed and will
likely be re-created. You should use onSaveInstanceState to re-create the state
of an activity before it was destroyed. A good use for it is to save the current scroll
position in a list, so you can maintain that position across orientation changes.
Here is an example that saves the current list position:

@Override

protected void onSaveInstanceState(Bundle outState) {

	 ListView list = (ListView) findViewById(R.id.time_list);

	 int pos = list.getFirstVisiblePosition();

	 outState.putInt(“first_position”, pos);

	 super.onSaveInstanceState(outState);

}

When onCreate is called, retrieve the list position from the input Bundle and
re-scroll the list. Handling details like this makes your app user friendly.

Understanding Activities  63

Preventing ANRs

An Android application runs in its own process, which is sandboxed from all other
applications. The application is run by a single thread: the main, or UI, thread. To
keep the app responsive, Android limits the time that any function call may take. If
the function exceeds this time limit, an Application Not Responding (ANR) dialog
will be shown to the user, asking them to either wait or force the app to close. You
want to avoid causing an ANR at all costs. ANRs happen when you perform long-
running operations on the main thread; examples include network I/O, disk I/O,
database queries, and CPU-intensive calculations.

StrictMode

Android 2.3 introduced a new developer tool called StrictMode. This tool will detect
disk or network operations occurring on the main thread and take action to warn
the developer. It provides a number of methods for warning the developer, from
simple logging statements to full-blown application crashes.

StrictMode is not guaranteed to find all disk and network I/O occurring on the
main thread. In particular, any accesses occurring through a Java Native Interface
(JNI) will not be detected. Be aware that although StrictMode is helpful, it is not
sufficient for creating responsive applications.

Declaring StrictMode
Here is a simple StrictMode declaration that detects all types of network and
disk I/O:

StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder()

	 .detectAll()

	 .penaltyLog()

	 .penaltyDialog()

	 .build());

tip:  Anytime you receive a callback from the Android system, it
is done by the main thread. This includes activity and service call-

backs, event handlers, button listeners, and so on. Remember not to per-
form any blocking operations in these callbacks. If you do need to perform
such an operation, start a background thread or an AsyncTask to handle it.

64  Chapter 2  Creating Your First Application

This will detect any network and disk I/O on the executing thread and take two
actions: printing a warning to the log and displaying a warning dialog to the user.
This example sets the warning only on the current thread. To detect violations on
any thread, use the setVmPolicy call:

StrictMode.setVmPolicy(new StrictMode.VmPolicy.Builder()

	 .detectAll()

	 .penaltyLog()

	 .penaltyDeath()

	 .build());

It’s recommended that you enable StrictMode in all projects you create. It’s
better to catch these cases earlier in development, when significant architecture
changes will not be required.

Disabling StrictMode
While StrictMode is very helpful for creating responsive applications, you should
disable it when you release your app in the market. Otherwise, users may encoun-
ter the policy violation dialogs or even experience app crashes. A simple method
of handling this is to enable StrictMode only if the app is built in debug mode
(signed with a debug key). To detect if an app is running in debug mode, check the
ApplicationInfo flags. The following code snippet checks if your app was built
using the debug signing key:

public static boolean isDebugMode(Context context) {

	 PackageManager pm = context.getPackageManager();

	 try {

		 ApplicationInfo info = pm.getApplicationInfo
		 p (context.getPackageName(), 0);

		 return (info.flags & ApplicationInfo.FLAG_DEBUGGABLE) != 0;

	 } catch (NameNotFoundException e) {

	 }

	 return true;

}

Preventing ANRs  65

Background Tasks

A common situation that you’ll encounter is the need to perform some long-running
operation that can’t be done on the UI thread—things like downloading RSS feeds,
writing a file, or running a timer. These tasks could potentially take many seconds
to run and would block the UI thread from updating. There are several strategies
you can take to handle these situations. Typically, you will create a new thread that
can perform the task, updating the UI or application state when finished. Here are
some strategies for implementing this behavior.

Handlers and message queues
Running a thread in the background is a good way to prevent blocking of the UI
thread. However, when the task is complete, you will often want to update the UI.
Updates to the UI can be performed only by the UI thread, or an exception will
be generated. To do this, you use the Handler class. A handler allows you to send
messages to be processed by the handler at some later time. These messages can
be processed immediately or scheduled for processing at some time in the future.
Handlers process messages in a handleMessage method.

By default, a Handler instance is bound to the thread that creates it (typically the
main thread). Binding the handler to the UI thread provides a convenient method
for updating the UI asynchronously. However, you also have the option of run-
ning the handler on a separate thread by supplying an optional Looper instance.
A looper is used to run a message loop for a thread. Using a looper, you can send
messages and have them executed by any thread instance.

The ability to post messages to be processed at later times makes handlers
ideal for implementing timing-based behavior. Here is a simple handler that the
TimeTracker application will use to track time intervals:

Note:  The Looper class creates and manages a MessageQueue object
that holds all messages for a thread. The UI thread already has a mes-

sage queue and looper set up for you.

66  Chapter 2  Creating Your First Application

private Handler mHandler = new Handler() {

	 public void handleMessage(Message msg) {

		 long current = System.currentTimeMillis();

		 mTime += current - mStart;

		 mStart = current;

		 TextView counter = (TextView) TimeTrackerActivity.this.
		 p findViewById(R.id.counter);

		 counter.setText(DateUtils.formatElapsedTime(mTime/1000));

		 mHandler.sendEmptyMessageDelayed(0, 250);

	 };

};

This code updates two fields of the enclosing Activity class that keep the
current time. Then it updates the UI (remember that the Handler callback will
run on the UI thread by default unless you explicitly give it another thread to run
on). Finally, it schedules another message for 100 milliseconds in the future. The
sendEmptyMessage method also takes an integer parameter that distinguishes it.
Here, there is only a single message, so set it to 0. Using the handler messaging
API, you can create convenience methods for using the timer:

1.	 Create a startTimer method in the TimeTrackerActivity class. This method
will record the current system time and send a message to the handler, start-
ing the timer. To prevent the possibility of having started the timer twice,
remove any existing messages before sending the next one.

private void startTimer() {

		 mStart = System.currentTimeMillis();

		 mHandler.removeMessages(0);

		 mHandler.sendEmptyMessage(0);

	 }

Preventing ANRs  67

2.	 The stopTimer method just removes any messages from the handler mes-
sage queue.

private void stopTimer() {

	 mHandler.removeMessages(0);

}

3.	 The resetTimer method will call stopTimer and then add the current time
to the list adapter, which will display it in the list.

private void resetTimer() {

	 stopTimer();

	 if (mTimeListAdapter != null)

		 mTimeListAdapter.add(mTime/1000);

	 mTime = 0;

}

Finally, you will need to know if the timer is stopped.

4.	 Create a method that checks for messages in the message queue.

private boolean isTimerRunning() {

	 return mHandler.hasMessages(0);

}

You now have all the logic for the timer completed.

Activity.runOnUIThread

It’s very common to use a handler just to update the UI from a back-
ground thread. Android provides a shortcut for these situations with the
Activity.runOnUiThread method. This method takes a runnable and posts
it to the UI thread message handler. When available, the main thread will
then run the code contained in that runnable.

68  Chapter 2  Creating Your First Application

AsyncTask
It’s very common to start a background thread to perform some task and then
update the UI when finished. You could just use a thread to perform these tasks
and then use the runOnUiThread method to display that data to the user. But what
happens if you need to display progress? Posting runnables to the UI message
handler is too heavyweight for these situations. Luckily, Android includes a class
called AsyncTask designed specifically for that scenario.

You can extend the AsyncTask class to create a simple thread to perform back-
ground tasks and publish the results on the UI thread. It includes methods for
updating the UI before and after a task has completed, along with progress updates
along the way. Here is the basic form of an AsyncTask:

private class DownloadFilesTask extends AsyncTask<URL, Integer, Long> {

	 protected Long doInBackground(URL... urls) {

	 while (true) {

		 // Do some work

		 publishProgress((int) ((i / (float) count) * 100));

	 }

	 return result;

	 }

	 protected void onProgressUpdate(Integer... progress) {

		 setProgressPercent(progress[0]);

	 }

	 protected void onPostExecute(Long result) {

		 showDialog(“Result is “ + result);

	 }

}

Preventing ANRs  69

The three type arguments given to the task are used to specify the type of the
parameters given at execution time, the type of the parameters given to set prog-
ress, and the result type returned when the background task has completed. You
can use onPreExecute to update the UI before your task runs, onProgressUpdate
to update a UI progress indicator, and onPostExecute to update the UI when the
task finishes. These methods all run on the main UI thread, so there is no danger
in updating your views. All code runs in the doInBackground method, which you
can think of as just being the run method of a thread.

AsyncTask is most useful for quick one-off tasks that need to update a UI com-
ponent (such as downloading new posts from Twitter and then loading those posts
into a timeline).

70  Chapter 2  Creating Your First Application

Finishing the TimeTracker

You almost have everything completed for the first version of the TimeTracker app.
It just needs some logic to handle the button presses.

1.	 Back in the onCreate method of your TimeTrackerActivity, add the fol-
lowing code:

Button startButton = (Button) findViewById(R.id.start_stop);

startButton.setOnClickListener(this);

Button stopButton = (Button) findViewById(R.id.reset);

stopButton.setOnClickListener(this);

This sets the TimeTrackerActivity class to be the listener for Button events.
You’ll learn more about event handling in the next chapter, but for now, update
the TimeTrackerActivity to implement the OnClickListener interface.

2.	 Override the onClick method. This method will be called each time one of
the buttons is pressed.

@Override

	 public void onClick(View v) {

		 TextView ssButton = (TextView) findViewById
 p (R.id.start_stop);

3.	 Check which button was pressed. If the user pressed the Start/Stop button,
check the state of the timer. If it’s stopped, you need to start it and change
the button text to “Stop”; otherwise, stop the timer and change the button
text to “Start”:

		 if (v.getId() == R.id.start_stop) {

			 if (isTimerStopped()) {

				 startTimer();

				 ssButton.setText(R.string.stop);

			 } else {

				 stopTimer();

				 ssButton.setText(R.string.start);

			 }

Finishing the TimeTracker  71

4.	 If the user pressed the Reset button, reset the timer and counter TextView
and then set the Start/Stop button text to “Start”:

		 } else if (v.getId() == R.id.reset) {

			 resetTimer();

			 TextView counter = (TextView) findViewById
			 p (R.id.counter);

			 counter.setText(DateUtils.formatElapsedTime(0));

			 ssButton.setText(R.string.start);

		 }

	 }

You can now run the app! It should look like Figure 2.14.
You should be able to start and pause the timer and record the previous values

in the list. In the next chapter, you’ll go further—you’ll extend the app to work
on multiple screen sizes, add some notifications, and make the timer work in the
background.

Figure 2.14  Your first app

72  Chapter 2  Creating Your First Application

Wrapping Up

This chapter introduced the common Android views and layout containers, along
with the attributes used to display them. You also started building a basic time-
tracking app. Along the way, you learned that

JJ Android provides many basic form widgets for building your UI.

JJ There are several layout container types, and they each have specific situ-
ations in which you should use them.

JJ Any updates to your app UI must take place on the UI thread.

JJ You can use a ListView to display lists of data to your users, and you can
bind data to that ListView by using a ListAdapter.

JJ Understanding the activity life cycle is fundamental to building a respon-
sive app.

JJ You can use StrictMode to prevent Application Not Responding (ANR) errors.

Wrapping Up  73

3

Going Further

75

Now that you have a basic app, it’s time to add some

more features. To start, you’ll need to handle some

more events from the user, create an ongoing notification,

and list extra options in a menu. Along the way, you’ll learn the

specifics of supporting multiple device configurations; explore

event callbacks and multiple event filtering; create notifications,

toasts, and dialogs to alert the user; and learn when and how to

create menus.

Android is designed to operate on a wide range of hardware devices, but writing
a separate interface for every device would be a nightmare. Luckily, the Android
OS provides a number of abstractions that support this diverse set of hardware.

Resource Qualifiers

Android has many features that are inspired by the web (not surprising given that
it was created by Google). Nowhere is this more apparent than in the design phi-
losophy of Android views. In contrast to iOS devices, Android apps don’t know
the screen resolution, size, or aspect ratio of the devices they run on, but you can
use the View classes to stretch and shrink layouts to fill the available space, just
as you can on the web.

You’ve already seen how to create Android layouts, and you’ve learned how to
create a layout that stretches to fill the available space. This creates a flexible layout,
but it’s usually not enough to make your app work on every device configuration.
Often, you need to do more than just adjust the size of elements—you actually
need to create a different layout to provide a useful interface. To make this easier,
Android uses a series of layout qualifiers that define different device configurations.
The layout qualifiers are appended to the resource folder names. Using these fold-
ers, you can create a layout for a specific set of device configurations; Android will
automatically select the appropriate layout file for the user’s device.

For example, when a phone is held in portrait, the basic XML layout file for
that device will be loaded and displayed. When a phone is rotated to landscape, a
landscape-specific layout can be loaded, but only if it is available; if no landscape
version is available, the standard portrait version will be loaded. Layout qualifiers
exist for screen density, orientation, screen size, mobile country codes, region,
platform version, primary navigation mode, and much more. Table 3.1 summarizes
the important qualifiers.

Tip:  The number of layout options may seem overwhelming
at first. Don’t worry. In general, you will only need to handle the

orientation, screen size, and screen density qualifiers.

Supporting Multiple
Screen Sizes

76  Chapter 3  Going Further

In the Hello World app you created in Chapter 1, the call to setContentView
will load the XML layout file and display it to the user. To add a new landscape
version of the layout, follow these steps:

1.	 In the res/ directory, create a new folder named layout-land/ and put a
copy of the main.xml file into it.

2.	 Open the new file and change the string to “Hello Landscape”.

Now when you start the app, you will see the standard layout in portrait but
the new layout in landscape.

Table 3.1  Common Layout Resource Qualifiers

Configuration Option Example Description

Screen orientation port
land

The orientation of the device. This changes often while your
application is running.

Screen pixel density ldpi
mdpi
hdpi
xhdpi
nodpi

The number of pixels per square inch of the display. An image
will appear as different physical sizes depending on the pixel
density of the screen. Use these qualifiers to create images of
different sizes for each screen density (use nodpi to provide image
resources that you do not want to scale based on the screen
density). Most Android devices on the market now are mdpi and
hdpi devices. xhdpi was introduced in API level 13 and is intended
for tablet devices.

Screen size small
normal
large
xlarge

A rough approximation of the physical screen size. Most Android
devices are normal to large. The xlarge qualifier represents tablet
devices. Consider using smallestWidth, available width, and avail-
able height for Android 3.2 and above.

smallestWidth, available width,
available height

sw320dp
sw720dp
w720dp
h720dp

The available screen pixels for width and height. These qualifiers
were added by Android 3.2 and make it easier to create layouts for
specific screen sizes.

API version v6
v14

The minimum API version supported by the device. For example,
the qualifier v7 means these resources should be used for all
devices running Android API version 7 and later.

Note that this is not an exhaustive list of qualifiers. Consult the Android documentation for all the available options.

Supporting Multiple Screen Sizes  77

Resource Qualifier Precedence

Android selects the appropriate resources at runtime, based on the device configura-
tion. Since multiple resource folders could match, Android establishes precedence
for qualifiers to resolve conflicts. This precedence determines which resources
are selected. Consult the Android documentation for the full list of qualifiers and
their precedence.

When selecting resources, these are the general steps that Android takes to
determine the proper folder:

1.	 Eliminate all folders that contradict the device configuration.

2.	 Select the next qualifier in precedence.

3.	 If any folders match this qualifier, eliminate all folders that do not match.
If no folders match this qualifier, return to step 2.

4.	 Continue until only one resource folder remains.

The exception to these rules is screen pixel density. Android will scale any
resources to fit the screen; therefore, all pixel densities are valid. Android will
select the closest density that is available, preferring to scale down larger densities.

An example will better illustrate how Android selects resources. Consider a
device with the following configuration:

JJ Screen orientation: landscape

JJ Screen pixel density: hdpi

JJ Screen size: large

JJ Touchscreen type: finger

You have the following resource folders in your app:

/res/layout/

/res/layout-notouch/

/res/layout-land/

Tip:  When creating resource folders, you must list qualifiers in
their precedence order. Your app will not compile otherwise.

78  Chapter 3  Going Further

/res/layout-land-ldpi/

/res/layout-land-finger/

/res/layout-hdpi/

Android will run through its steps to select the best resource:

1.	 Eliminate the /res/layout-notouch/ folder because it conflicts with the
touchscreen qualifier.

2.	 There are no folders with screen-size qualifiers, so skip to the next qualifier.

3.	 Orientation is the next highest precedence, so eliminate all folders that do
not have the land qualifer. This leaves three folders: /res/layout-land/,
/res/layout-land-ldpi/, and /res/layout-land-finger/.

4.	 The next qualifier is pixel density. There is no exact match, so continue to the
next qualifier. If no other qualifiers match, select the nearest pixel density.

5.	 The last qualifier is touchscreen type. In this case, finger means that the
device has a capacitive touchscreen, so eliminate all folders that do not
contain the finger qualifier.

6.	 The only remaining folder is /res/layout-land-finger/. Select the layouts
in this folder.

Android performs this procedure for every resource your layouts require. Often,
resources will be mixed from multiple locations. For example, the layout may be
taken from the /res/layout-ldpi/ folder, but the drawable resources could be
taken from the /res/layout-hdpi/ folder. Remember that Android selects each
resource independently and will pick the best match. If you start getting strange
problems with your layouts, check the precedence on your resource folders. Android
may be loading different resources than you expect!

Note:  Android will select only screen size resource qualifiers that
are smaller than or equal to the device configuration (excluding
the pixel density qualifier). If you have only xlarge resources and
the device has a small screen, then your app will crash when it runs.

Supporting Multiple Screen Sizes  79

Density-Independent Pixels

Using resource qualifiers and Android’s layout containers will let you create lay-
outs that stretch and compress to fill available space. But sometimes you need to
specify the exact dimensions of a view. If you’ve done GUI programming, you’re
probably used to specifying exact sizes in pixels. Android supports this, but you
should avoid using absolute pixel or dimension values when you create your app.
The pixel density of devices varies greatly, and the same resource will appear as
a different physical size on each device. Figure 3.1 shows an example of a button
that has its height and width values specified in pixels. At each screen density, the
relative size of the view is different.

To handle this, Android has several ways of declaring dimensions in a density-
independent manner, summarized in Table 3.2.

Figure 3.2 shows the previous example, but with the height and width of the but-
ton specified in dp. The buttons appear much closer to the same size on the screen.

In general, you should use dp for all units of measure (or sp for text sizes).
Using these units will make your layouts appear consistent across device sizes and
densities. This will ensure you get maximum device compatibility and will help
you avoid layout headaches later.

Figure 3.1  A button with a
fixed pixel size. At different
screen resolutions, it appears
as a physically different size.

80  Chapter 3  Going Further

Table 3.2  Android Dimension Units

Unit Description

px The physical pixels on the device. This will make a view take up an exact
number of pixels on the screen. However, since every device has a dif-
ferent number of pixels, and the pixels might be different physical sizes,
this unit should be avoided.

in Inches on the screen. This will make a view take up an exact number
of inches on the screen. Again, since every device has a different screen
size, this unit should be avoided.

mm Millimeters on the screen. This will make a view take up an exact num-
ber of millimeters on the screen. Like inches, this unit should be avoided.

pt Points, which are 1/72 of the physical screen size. Much like in and mm,
points are based on the physical size of the device and generally are
not used.

dip, dp Density-independent pixel. This is an abstract unit representing a single
pixel on a device with a resolution of 160 dpi. The view will be scaled
based on the dpi of the running device. This is the unit you should use
for all layouts. Note that dip is interchangeable with dp.

sp Scaled pixel. This is the same as dp, but it is scaled based on the user’s
font size preference. You should use this unit when specifying font or
text sizes that need to be adjusted based on the user’s preferences.

Figure 3.2  A button with
density-independent pixels
will appear as the same
physical size, regardless of
screen density.

Supporting Multiple Screen Sizes  81

9-Patch Graphics

Using the resource folders and density-independent pixels will get you most of
the way to a flexible layout, and Android will scale your images appropriately in
most situations. But often you will need to create image resources with rounded
corners. These images won’t stretch properly and will appear distorted. To handle
that case, Android supports a feature known as a 9-patch graphic. This is simply
a PNG file with a 1-pixel border around it. The Draw 9-Patch tool (see Chapter 1)
provides an easy way to create 9-patch graphics (Figure 3.3). These images can be
stretched in the areas indicated by the shaded region (marked with black pixels
in the border of the image). By using the Draw 9-Patch tool, you ensure that your
image will stretch but will maintain the proper rounding on corners. All of the
stock Android button resources use 9-patch graphics.

Figure 3.3  The Draw
9-Patch tool

82  Chapter 3  Going Further

Best Practice

Creating flexible layouts may seem arduous at first, but it will soon become
second nature. Remember these points, and you should be able to build an
app that is compatible with the majority of Android devices:

JJ Always use density-independent pixel values in your layout.

JJ Use wrap_content and match_parent whenever possible. This will
make your layout much more flexible than layouts using hard-coded
dimension values.

JJ Provide alternate image resources for each density to ensure that your
images look appropriate on all screen densities.

JJ Use 9-patch graphics for any resources that can’t stretch without
distortion.

Tip:  Remember that if you haven’t yet adapted your app to a
particular screen configuration, you can specifically declare which
configurations your app supports in the Android manifest. This will prevent
your app from being installed on unsupported hardware.

Supporting Multiple Screen Sizes  83

Handling Notifications

Android is designed to run on portable devices that are carried everywhere and
used in sporadic bursts. To ensure that users get the full benefit of these devices,
Android supplies a robust set of notification techniques to ensure that users are
immediately aware of any events. This section covers the notification options in
order of increasing interruption to the user.

Toasts

A toast is the most basic and least intrusive notification. This is a simple message
that is flashed on the screen for a short time (typically 5 to 10 seconds). It’s intended
to give the user immediate feedback on some event that is relevant to their cur-
rent situation. For example, if a social networking app is attempting to update a
user’s status, it could use a toast to inform the user when the status is successfully
updated. Figure 3.4 shows an example toast.

Figure 3.4  A toast notification

84  Chapter 3  Going Further

To create a toast, use the static makeText method on the Toast class to create
a Toast object. Give it a context, the text you want to display, and a duration. The
duration can be either Toast.LENGTH_SHORT or Toast.LENGTH_LONG. Calling show()
on the Toast object will display it to the user. The following code snippet creates
a simple toast:

Context context = getApplicationContext();

CharSequence text = “Hello toast!”;

int duration = Toast.LENGTH_SHORT;

Toast toast = Toast.makeText(context, text, duration);

toast.show();

Toasts include options for setting their position on the screen. Use the
setGravity method to change the default display location. And as with most views
in Android, you can override the default layout of a toast and create a custom toast.

Use toasts when you want to give quick feedback to the user but don’t expect
them to take any action.

Status Bar Notifications

The primary notification method in Android is the notification tray. This tray can be
pulled down from the top of the screen and contains all ongoing and immediately
important notifications. A notification in the tray consists of an icon, title text, and
message text. Tapping the notification will take the user to the app that generated
the notification (more on this in a bit).

Tip:  It’s possible for toasts to be shown when your application
is not in the foreground. For example, a toast generated by a back-
ground service could be displayed during any application. Carefully think
through the situations that might generate a toast in your application,
and choose appropriate text.

Handling Notifications  85

If you need to create a notification, it should generally go in the notification
tray. It’s the easiest way to notify the user, it is unobtrusive, and users will expect
it. Figure 3.5 shows some example notifications.

Notifications have a few basic parameters you can set:

JJ An icon to display in the status bar.

JJ Optional ticker text that will be displayed in the status bar when the noti-
fication is first shown.

JJ The title and message to display in the notification tray. This is also optional.

JJ A required PendingIntent to trigger when the user taps the notification.

Figure 3.5  One-time and
ongoing notifications in the
Android notification tray

Tip:  Take care not to generate an excessive number of notifica-
tions. This will clutter the user’s notification tray, and they will

likely uninstall your app. Instead, collapse all notifications into a single
summary notification (such as total number of messages received).

86  Chapter 3  Going Further

A PendingIntent is simply a holder for an intent and target action. It allows
you to pass an Intent object to another application and invoke that Intent as if
it were invoked by your application. In this way, the PendingIntent can be used
to trigger actions in your app. The PendingIntent is used by the notification tray
application to trigger an event in your app when the user taps your notification.

Here is an example notification:

int icon = R.drawable.icon;

CharSequence ticker = “Hello World!”;

long now = System.currentTimeMillis();

Notification notification = new Notification(icon, ticker, now);

A notification is created with an icon, ticker text, and timestamp. This example
creates a notification with the resource located at /res/drawable/icon, the ticker
text set to the string “Hello World!”, and the time set to the current time.

Once you have created a notification, use the NotificationManager to display
that notification to the user:

NotificationManager nm = (NotificationManager)
p getSystemService(NOTIFICATION_SERVICE);

Context context = getApplicationContext();

CharSequence message = “Hello World!”;

Intent intent = new Intent(this, Example.class);

String title = “Hello World!”;

String message = “This is a message.”;

PendingIntent pendingIntent = PendingIntent.getActivity(this, 0,
p intent, 0);

notification.setLatestEventInfo(context, title, message,
p pendingIntent);

nm.notify(ID, notification);

Handling Notifications  87

More Notification Options

You can do more than just update the status bar with notifications—
you have the option of playing a sound, flashing an LED, or vibrating
the device when the notification is triggered. You do this by using the
notification.defaults option. For example, to play the default notification
sound, set the defaults option to:

notification.defaults |= Notification.DEFAULT_SOUND;

This will play the user-configured notification sound when your notification
is displayed. You can also use a custom sound for the sound option:

notification.sound = Uri.parse(“file:///sdcard/mysound.mp3”);

There are custom options for LED flashing and vibrations as well. Check out the
Notification class in the Android documentation for all options available. Keep
in mind that not all devices will have LED indicators or vibration capability.

Use the setLatestEventInfo method to update the contents of the notification.
Here, the PendingIntent is set to display the example activity when the notifica-
tion is tapped. Call notify to display the notification in the tray. The device status
bar will also display the notification briefly before returning to its usual state. You
can update a notification that is already displayed by calling setLatestEventInfo
and then notify again.

Tip:  Android 3.0 (Honeycomb) introduced the Notification.
Builder class for creating notifications. This builder replaces the

existing constructor for the Notification class and makes creating notifi-
cations easier. The notification ID for each notification should be globally
unique in your app. You should list all these IDs in a common file to ensure
their uniqueness, or strange behavior may result.

88  Chapter 3  Going Further

Dialogs

Notifications are great for most events, because they don’t interrupt the user. How-
ever, sometimes you need to inform the user of something immediately—perhaps
you need to alert the user to some failure in your app or confirm that they want to
perform an action. To do this, you use a dialog.

Dialogs are small windows displayed over your application (Figure 3.6). They
block all user input into your app and must be dismissed before the user can con-
tinue using your app. This makes them the most intrusive of all notification types.
Android provides several types of dialogs, with different use cases: an AlertDialog
with simple Accept and Cancel buttons, a ProgressDialog for displaying long-
running progress, and date- and time-picker dialogs for accepting user input.

To create a dialog, extend the DialogFragment class and implement either
the onCreateView or onCreateDialog method. Use onCreateView to set the view
hierarchy (what is displayed inside it) for the dialog; use onCreateDialog to create
a completely custom dialog. A typical scenario is to override onCreateDialog and
return an AlertDialog. An AlertDialog is a dialog with some text and one, two,
or three buttons.

Figure 3.6  An alert dialog

Handling Notifications  89

Pre-3.0 Dialogs

Dialogs have traditionally been managed as part of the activity life cycle.
However, Android 3.0 introduced a new method of creating dialogs: the
DialogFragment class. This class uses the new Fragments framework to create
and manage the life cycle of dialogs. This is the primary method of creating
a dialog for future versions of Android. The DialogFragment class is available
to previous versions of Android through the compatibility library, a collection
of classes that allows you to use the new fragments APIs on older versions of
Android. You should use DialogFragments for all of your applications.

Add a confirm dialog to the TimeTracker app you created in Chapter 2 by
following these steps:

1.	 Create a new class, ConfirmClearDialogFragment, that extends DialogFragment:

public class ConfirmClearDialogFragment extends DialogFragment {

}

2.	 Override the onCreateDialog method and return a new AlertDialog:

@Override

public Dialog onCreateDialog(Bundle savedInstanceState) {

	 return new AlertDialog.Builder(getActivity())

	 .setTitle(R.string.confirm_clear_all_title)

	 .setMessage(R.string.confirm_clear_all_message)

	 .setPositiveButton(R.string.ok, null)

	 .setNegativeButton(R.string.cancel, null)

	 .create();

}

Here, an AlertDialog.Builder class is used to create the AlertDialog
that will be returned by the onCreateDialog method. Note that it uses the
string resources defined in strings.xml to set the title, message, and button
text of the dialog. In this example, the buttons are set to do nothing when
clicked by setting the onClickListener to null. You will learn more about
handling events using click listeners in the next section.

90  Chapter 3  Going Further

3.	 Add the following code to the onCreate method to create the dialog and
display it to the user:

FragmentManager fm = getSupportFragmentManager();

if (fm.findFragmentByTag(“dialog”) == null) {

	 ConfirmClearDialogFragment frag =
	 p ConfirmClearDialogFragment.newInstance(mTimeListAdapter);

	 frag.show(fm, “dialog”);

}

If you run the app now, the dialog should appear immediately. Dismiss it by
pressing any button. Fragments let you decompose your application into reusable
components, such as this dialog. You’ll learn more about fragments in Chapter 5.

Note:  Fragments, including the DialogFragment, require a public
no-argument constructor. Failing to provide one will result in odd
behavior in your app.

Handling Notifications  91

Handling Events

Like most GUI frameworks, Android uses an event-based model to handle user
interaction. When the user taps the screen, a touch event is fired and the cor-
responding onTouch method of the tapped view is called. By extending the views
in your UI, you can receive these events and use them to build gestures into your
app; similar methods exist for handling focus and key change events.

These event callbacks form the basis of Android event handling. However,
extending every view in your UI is not practical. Further, the low-level nature of the
events requires work to implement simple interactions. For this reason, Android
has a number of convenience methods for registering listeners on the existing View
class. These listeners provide callback interfaces that will be called when common
interactions, like tapping the screen, are triggered. To handle these common events,
you register an event listener on a view. The listener will be called when the event
occurs on that view. You generally want to register the listener on the specific view
the user will interact with. For example, if you have a LinearLayout container with
three buttons inside, you would register the listeners on the buttons rather than
the container object. You have already seen an example of this with the onClick
method in the TimeTracker app.

Note:  Android event callbacks are made by the main thread (also called
the UI thread). It’s important that you not block this thread, or you

will trigger an Application Not Responding (ANR) error. Make sure to
perform any potentially long-running operations on a separate thread.

92  Chapter 3  Going Further

Screen Taps

The simplest type of event is a simple tap on the screen. To listen for this event,
you register an onClickListener that has a single method: onClick. This method
will be called every time a user taps that view on the screen. An onClickListener
can be registered on any view. In fact, a button is just a view with a background that
appears tappable and that responds to focus and press events by changing state.

In the previous section, you saw an example of an AlertDialog with buttons.
In that example, the button event listeners had been set to null, disabling them.
You can add custom button-click actions to the dialog by creating implementations
of the OnClickInterface:

AlertDialog.Builder(getActivity())

	 .setTitle(R.string.confirm_clear_all_title)

	 .setMessage(R.string.confirm_clear_all_message)

	 .setPositiveButton(R.string.ok,
	 p new DialogInterface.OnClickListener() {

		 @Override

		 public void onClick(DialogInterface dialog, int which) {

			 dialog.dismiss();

			 mAdapter.clear();

		 }

	 })

	 .setNegativeButton(R.string.cancel, null)

	 .create();

This code creates a confirmation dialog. The positive button uses a click listener
that will dismiss the dialog and clear the list adapter. The negative button again
just clears the dialog.

Tip:  To avoid creating anonymous classes for click handling,
you can implement the click interfaces in your activity and simply
pass in this when registering a click listener.

Handling Events  93

Long Presses

A long press is triggered when the user taps and holds on the screen. It is used to
create an alternate action for a view. This can be used to create a context-specific
menu, trigger an alternate action, or drag an icon on the screen. You can think of
the long press as analogous to the right-click on a traditional desktop application.

Long presses are handled by registering an onLongPressListener. Other than
the name, the setup of a long-press listener is exactly the same as a standard click
listener. Here is a simple example of a long press listener that displays a toast message:

View view = findViewById(R.id.my_view);

view.setOnLongClickListener(new View.OnLongClickListener() {

	 @Override

	 public boolean onLongClick(View v) {

		 Toast.makeText(TimeTrackerActivity.this, “Long pressed!”,
		 p Toast.LENGTH_LONG).show();

		 return false;

	 }

});

The most common usage of long pressing in a UI is for creating a context menu.
For those cases, you don’t create a long press listener but instead create a context-
menu listener. You’ll learn more about context menus in the next section.

Note:  Android will propagate events up the view hierarchy. Returning
true from an event handler will stop the propagation, as the event has

been reported as handled. Make sure you want to stop handling events
when you return true.

94  Chapter 3  Going Further

Focus Events and Key Events

The majority of Android devices have a touchscreen interface. However, Android is
also designed to work on devices that use a keyboard-style input. In this case, the
touch/click events don’t apply. To handle those cases, Android uses focus events
and key events. Figure 3.7 shows an example of the different states of a button.

The focus event is triggered when a view on the screen gains focus. This hap-
pens when a user navigates to it using a trackball or the arrow keys on a keyboard.
It is called again when the view loses focus; this is typically used on devices that
have a trackball. When the user actually presses an action button on your view,
the key event will be called. You can intercept this event using an OnKeyListener,
which will trigger the onKey event when the user presses a button. You can also
directly override the onKeyUp, onKeyDown, or onKeyPress methods of the View class,
providing a lower level of event handling.

While these events may seem unnecessary in an age of touchscreen devices,
there are important uses for focus and key events. If you’re designing apps for the
Google TV platform, you will want to use these events to handle navigation in your
app, because the user will likely be using a remote control. Also, properly handling
focus and key events is key to adding accessibility features to your application. Users
with disabilities that require screen readers or other alternate input methods will
appreciate an app that is designed to work without a touch interface.

Figure 3.7  Different states of
a button: default (left), focused
(middle), pressed (right)

Handling Events  95

Creating Menus

All Android devices before version 3.0 include a menu button. This menu button
creates an activity-specific menu that you can use to provide extra functionality in
your app (Figure 3.8). This frees you to design your UI with only the most important
actions and to hide optional functionality. On Android versions 3.0 and later, the
menu button is generally part of the application UI; it appears as a button in the
action bar. You will learn more about the action bar in Chapter 6.

Menu Layout

Like all other Android layouts, menus can be defined using XML or Java code.
It’s generally a better idea to use XML, because you can quickly create the menu
options and their order without any boilerplate code.

Figure 3.8  A menu on
Android 2.3

Tip:  You should take care not to provide too much functionality
via the options menu. Common user actions should be available

with a single touch in your UI. Users may not even know that an action is
available if it is buried in a menu.

96  Chapter 3  Going Further

Add a menu to the TimeTracker app to clear the current list of times:

<?xml version=”1.0” encoding=”utf-8”?>

<menu xmlns:android=”http://schemas.android.com/apk/res/android” >

	 <item

		 android:id=”@+id/clear_all”

		 android:title=”@string/clear_all”/>

</menu>

The basic structure of the menu layout is quite simple: A top-level menu element
contains the item elements; each item element defines a single menu option. The
android:id attribute is required for each item and is how you will reference the
options in your code. The android:title attribute provides the string resource
name that will appear in your app. Although a title is not required, you should
always provide one; otherwise, your menu option will appear as a blank space.

You can optionally assign to your menu items an icon that will be displayed
alongside the text. Icons can help the user quickly understand the available options
in your menu. Menus can be nested inside items, creating submenus. Figure 3.9
shows an example of a menu leading to a submenu.

Figure 3.9  A submenu is
opened when the user taps
the Submenu menu option.

Creating Menus  97

There are many more options available for menu items. You should explore
the range of options available and take advantage of menus in your application.

Menu Callbacks

To provide an options menu in your activity, you need to override the callback meth-
ods onCreateOptionsMenu and onOptionsItemSelected. The onCreateOptionsMenu
callback is called when the user presses the menu button; this is where you create
the menu by using the layout resource file. To do this, inflate the layout file by
using the MenuInflater class. The following code snippet provides an example:

@Override

	 public boolean onCreateOptionsMenu(Menu menu) {

		 MenuInflater inflater = getMenuInflater();

		 inflater.inflate(R.menu.menu, menu);

		 return true;

	 }

Once the menu has been created, you override onOptionsItemSelected to
handle the menu selection. This method is called with the menu item that the user
selected. You then select the appropriate action based on the selected menu item.

Layout Inflation

The process of converting a layout XML file into a hierarchy of views is called
inflating. This is typically done using the LayoutInflater class, although the
MenuInflater is used for inflating menu layouts. Inflating a view is optimized
by the Android resource compiler and requires a compiled XML file. You can’t
inflate a generic XML file, only those contained in the R.java file.

You can inflate a view by using View.inflate method or by calling inflate
on the LayoutInflator system service. You can retrieve a reference to
the LayoutInflator by calling getSystemService and passing it the
Context.LAYOUT_INFLATER_SERVICE string.

 You only need to inflate views that are added to your layout at runtime. Call-
ing setContentView will inflate the views in your layout for you. When using
findViewById to retrieve a view, the result is already inflated.

98  Chapter 3  Going Further

Add an option to clear all tasks to the TimeTracker application:

1.	 Override the onOptionsItemSelected method:

@Override

public boolean onOptionsItemSelected(MenuItem item) {

	 switch(item.getItemId()) {

	 case R.id.clear_all:

		 return true;

	 default:

		 return super.onOptionsItemSelected(item);

	 }

}

2.	 Move the dialog creation code from the onCreate method. The result is a
dialog confirming that the user wants to clear all the tasks:

@Override

public boolean onOptionsItemSelected(MenuItem item) {

	 switch(item.getItemId()) {

	 case R.id.clear_all:

	 	 FragmentManager fm = getSupportFragmentManager();

	 	 if (fm.findFragmentByTag(“dialog”) == null) {

	 	 	 ConfirmClearDialogFragment frag = 	
	 	 	 p ConfirmClearDialogFragment.	
	 	 	 p newInstance(mTimeListAdapter);

	 	 	 frag.show(fm, “dialog”);

	 	 }

		 return true;

	 default:

		 return super.onOptionsItemSelected(item);

	 }

}

Creating Menus  99

The method returns true when it has finished creating the dialog to indicate that
the event has been handled and should not be propagated to any other handlers.

Context Menus

A context menu is like a right-click menu in a standard desktop computing envi-
ronment. Context menus work the same way as options menus but are triggered
when the user long-presses a view. To create a context menu, you set the context
menu listener for a view and implement the onCreateContextMenu method. In this
method, you inflate the context menu to display to the user. Finally, you imple-
ment the onContextItemSelected method to handle user selections. You register
the context menu listener using either View.setOnCreateContextMenuListener
or Activity.registerForContextMenu. Figure 3.10 shows an example context
menu. Here is the code to create that menu:

Figure 3.10  Context menus
are opened when the user
long-presses a view.

100  Chapter 3  Going Further

TextView tv = (TextView) findViewById(R.id.text);

tv.setOnCreateContextMenuListener(this);

// Alternatively, use Activity.registerForContextMenu(tv);

@Override

public void onCreateContextMenu(ContextMenu menu, View v,

		 ContextMenuInfo menuInfo) {

	 super.onCreateContextMenu(menu, v, menuInfo);

	 MenuInflater inflater = getMenuInflater();

	 inflater.inflate(R.menu.context_menu, menu);

}

@Override

public boolean onOptionsItemSelected(MenuItem item) {

	 switch(item.getItemId()) {

	 case R.id.item1:

		 return true;

	 case R.id.item2:

		 return true;

	 default:

		 return super.onOptionsItemSelected(item);

	 }

}

Creating Menus  101

Implementing the
Time Tracker

Now that you’ve added a notification, a menu, and a dialog to the TimeTracker
app, you should have something that looks like Figure 3.11. It still runs only while
the app is in the foreground, though. To fix this, you’ll need to create a service
to handle running the timer and updating the notification. A service is how you
perform background tasks on Android. Its life cycle is similar to that of the activity,
but it does not have a UI component. Anytime you need to execute code when the
user is not actively using your app, you should create a service.

1.	 Create a new TimerService class that extends Service. Move all the Handler
code from the TimeTrackerActivity to the TimerService, and add some
convenience methods for stopping and resetting the timer:

Figure 3.11  TimeTracker app
with notification and confirm
dialog

Note:  The service life cycle callbacks are run by the Android main thread.
Just as with activities, you should avoid performing long-running

operations in those methods. Instead, start a thread or use message
handlers with background workers to perform the actual background work.

102  Chapter 3  Going Further

public class TimerService extends Service {

	 private static final String TAG = “TimerService”;

	 public static int TIMER_NOTIFICATION = 0;

	 private NotificationManager mNM = null;

	 private Notification mNotification = null;

	 private long mStart = 0;

	 private long mTime = 0;

	 public class LocalBinder extends Binder {

		 TimerService getService() {

			 return TimerService.this;

		 }

	 }

	 private final IBinder mBinder = new LocalBinder();

	 private Handler mHandler = new Handler() {

		 public void handleMessage(Message msg) {

			 long current = System.currentTimeMillis();

			 mTime += current - mStart;

			 mStart = current;

			 updateTime(mTime);

			 mHandler.sendEmptyMessageDelayed(0, 250);

		 };

	 };

	 @Override

	 public void onCreate() {

		 Log.i(TAG, “onCreate”);

		 mNM = (NotificationManager)getSystemService
		 p (NOTIFICATION_SERVICE);

	 }

Implementing the Time Tracker  103

	 @Override

	 public int onStartCommand(Intent intent, int flags,
	 p int startId) {

		 // Show notification when we start the timer

		 showNotification();

		 mStart = System.currentTimeMillis();

		 // Only a single message type, 0

		 mHandler.removeMessages(0);

		 mHandler.sendEmptyMessage(0);

		 // Keep restarting until we stop the service

		 return START_STICKY;

	 }

	 @Override

	 public void onDestroy() {

		 // Cancel the ongoing notification.

		 mNM.cancel(TIMER_NOTIFICATION);

		 mHandler.removeMessages(0);

	 }

	 @Override

	 public IBinder onBind(Intent intent) {

		 return mBinder;

	 }

	 public void stop() {

		 mHandler.removeMessages(0);

		 stopSelf();

		 mNM.cancel(TIMER_NOTIFICATION);

	 }

	 public boolean isStopped() {

104  Chapter 3  Going Further

		 return !mHandler.hasMessages(0);

	 }

	 public void reset() {

		 stop();

		 timerStopped(mTime);

		 mTime = 0;

	 }

}

You still need to update the activity, though, so the service will need to notify
the activity of the current time via the updateTime method.

2.	 Create the updateTime method, and inside it create a broadcast intent to
send the current time:

private void updateTime(long time) {

	 Intent intent = new Intent(TimeTrackerActivity.
	 p ACTION_TIME_UPDATE);

	 intent.putExtra(“time”, time);

	 sendBroadcast(intent);

}

3.	 Create a timerStopped method to notify the activity that the timer has
finished:

private void timerStopped(long time) {

	 // Broadcast timer stopped

	 Intent intent = new Intent(TimeTrackerActivity.
	 p ACTION_TIMER_FINISHED);

	 intent.putExtra(“time”, time);

	 sendBroadcast(intent);

}

Implementing the Time Tracker  105

4.	 In the TimeTrackerActivity onCreate method, create an IntentFilter to
be called when the intent is broadcast:

IntentFilter filter = new IntentFilter();

filter.addAction(ACTION_TIME_UPDATE);

filter.addAction(ACTION_TIMER_FINISHED);

registerReceiver(mTimeReceiver, filter);

Now when the service updates the time, the activity will be notified and
can update its counter. This will also come in handy later when you create
a widget.

5.	 Add the notification code to the service, and call it when the timer is updated:

private Notification mNotification;

private void updateNotification(long time) {

	 String title = getResources().getString
	 p (R.string.running_timer_notification_title);

	 String message = DateUtils.formatElapsedTime(time/1000);

	 Context context = getApplicationContext();

	 Intent intent = new Intent(context,
	 p TimeTrackerActivity.class);

	 PendingIntent pendingIntent =
	 p PendingIntent.getActivity(context, 0, intent, 0);

	 mNotification.setLatestEventInfo(context, title, message,
	 p pendingIntent);

mNM.notify(TIMER_NOTIFICATION, mNotification);

}

You should now be able to run the timer in the background (Figure 3.12).

106  Chapter 3  Going Further

Wrapping Up

This chapter introduced basic Android UI concepts for supporting multiple device
configurations, notifications, and options menus. Along the way, you learned that

JJ Android uses a combination of folder naming conventions, image scaling,
and density-independent dimensions to create flexible layouts for different
device configurations.

JJ Touch, focus, and key events are available, but you’ll probably want to use an
event listener to handle common user actions such as tapping on the screen.

JJ Notifications are the primary method of notifying your users, but dialogs
and toasts can be used when you need more or less urgency.

JJ Menus allow you to add functionality to your app without cluttering the
layout, but you should take care not to hide essential actions from the user.

Figure 3.12  The ongoing timer
notification is even present on
the home screen.

Wrapping Up  107

This page intentionally left blank

Part 2

The View
Framework

4

Basic Views

111

The most basic element of Android user interfaces is

the View class. A view represents an area of the screen.

Buttons, lists, webpages, and even empty spaces are rep-

resented by views. Android contains a rich array of pre-built

View classes that provide much of the functionality you will need.

When the built-in views aren’t enough, it’s possible to create spe-

cial views that are just right for your application. In this chapter,

you will learn about the basic view types you can use to build your

layout, discover how to load and display images, and explore the

more advanced views available in Android: MapView and WebView.

The TimeTracker app looks pretty good so far, but it’s time to add more than just
a list of times. In this chapter, you’ll add some text entry forms and split the app
into multiple activities. When you’re finished, you’ll have something that looks
like Figure 4.1. This section will cover the basic widgets you see in the image, as
well as how to arrange them.

TextView and EditText

The most basic view available on Android is the TextView, which allocates an area of
the screen to display text. You will use this view a lot in your layouts. An EditText is
a TextView that is configured to allow the user to edit the text inside it (Figure 4.2).
Tapping an EditText will display a cursor and the device software keyboard, allowing
the user to enter new text or edit the existing text. The TextView has optional attri-
butes such as size, font, and color that allow you to change the appearance of the text.

Figure 4.1  The TimeTracker
app will have task detail and
task edit screens.

Creating a Basic Form

112  Chapter 4  Basic Views

Creating the TextView
To create the new UI for the TimeTracker app, you’ll need to create two new layouts:
task_detail.xml and edit_task.xml. They will look very similar, but edit_task.xml
will use EditText instead of TextView. Here is the XML for task_detail.xml:

<LinearLayout

	 android:layout_width=”match_parent”

	 android:layout_height=”match_parent”

	 android:orientation=”vertical” >

	 <TextView

		 android:id=”@+id/counter”

		 android:layout_width=”fill_parent”

		 android:layout_height=”wrap_content”

Figure 4.2  A TextView and
an EditText

Creating a Basic Form  113

		 android:gravity=”center”

		 android:padding=”10dp”

		 android:text=”@string/sample_time”

		 android:textAppearance=”?android:attr/textAppearanceLarge”

		 android:textSize=”50sp” >

	 </TextView>

	 <Button

		 android:id=”@+id/start_stop”

		 android:layout_width=”match_parent”

		 android:layout_height=”wrap_content”

		 android:layout_marginBottom=”30dp”

		 android:text=”@string/start” />

	 <TextView

		 android:id=”@+id/task_name”

		 android:layout_width=”match_parent”

		 android:layout_height=”wrap_content”

		 android:layout_marginBottom=”20dp”

		 android:text=”@string/task_name”

		 android:textSize=”20dp” >

	 </TextView>

	 <TextView

		 android:id=”@+id/task_date”

		 android:layout_width=”match_parent”

		 android:layout_height=”wrap_content”

		 android:layout_marginBottom=”20dp”

		 android:text=”@string/date_select”

		 android:textSize=”20dp” />

114  Chapter 4  Basic Views

	 <TextView

		 android:id=”@+id/task_desc”

		 android:layout_width=”match_parent”

		 android:layout_height=”0dp”

		 android:layout_marginBottom=”20dp”

		 android:layout_weight=”1”

		 android:text=”@string/description”

		 android:textSize=”20dp” />

</LinearLayout>

This XML layout keeps the counter and the Start/Stop button from Chapter 2, but
the task list is replaced with the new task detail fields. Note the use of layout_weight
on the description to fill the entire display.

Simplifying text entry
In addition to general text entry, you will probably want your users to enter textual
data in a particular format. Data such as email addresses, phone numbers, and
passwords are particularly common on a mobile device. With a hardware keyboard,
the user just enters data normally, but because Android devices have a software
keyboard, the keys can be changed to make entry of certain data types easier. For
example, if you have a field that accepts only numerical data, the keyboard will
display just the number pad.

Note:  In addition to changing the input, Android supports changing
the entire software input editor, or IME. The typical IME is a software
keyboard, but Android also supports IMEs like voice input, handwriting
recognition, or even Palm OS-inspired graffiti. While this is not some-
thing you control with your app, you can give hints about the actions
that should be taken when inputting data into forms; those hints will
then be used to select the appropriate IME.

Creating a Basic Form  115

The inputType attribute of your EditText class is a simple bit mask that defines
the type of data you expect the user to enter. The system can then display an appro-
priate keyboard type. You can combine EditText flags (attributes) so that the system
creates a targeted input keyboard. For example, the following EditText attributes
will make the keyboard a number pad for easy entry of phone numbers (Figure 4.3):

<EditText

	 android:layout_width=”match_parent”

	 android:layout_height=”wrap_content”

	 android:inputType=”phone” />

Along with changing the keyboard, you can use inputType to change the behavior
of the EditText; for example, use flags like textCapSentences and textAutoCorrect
to add capitalization and autocorrection to what the user types. In addition to con-
figuring the input options, you can use an IME option to set the text for the Enter
button, which appears in the lower-right corner of the stock Android keyboard: Use
the imeOptions attribute to select actionGo, actionSearch, actionSend, actionNext,

Figure 4.3  The keyboard
displayed when the inputType
of an EditText is set to phone

116  Chapter 4  Basic Views

or actionDone to give the user a visual indication of what action will be taken when
they are finished entering text.

Now you can create the content of the edit_task.xml layout. Create the file,
and add the following XML:

<LinearLayout

	 android:layout_width=”match_parent”

	 android:layout_height=”match_parent”

	 android:orientation=”vertical” >

	 <EditText

		 android:id=”@+id/task_name”

		 android:layout_width=”match_parent”

		 android:layout_height=”wrap_content”

		 android:hint=”@string/task_name”

		 android:layout_margin=”10dp”

		 android:textSize=”24dp” >

	 </EditText>

	 <EditText

		 android:id=”@+id/description”

		 android:layout_width=”match_parent”

		 android:layout_height=”0dp”

		 android:layout_weight=”1”

		 android:layout_margin=”10dp”

		 android:hint=”@string/description”

		 android:gravity=”top|left” />

	 <DatePicker

		 android:id=”@+id/datePicker1”

		 android:layout_width=”wrap_content”

		 android:layout_height=”wrap_content”

Creating a Basic Form  117

		 android:layout_gravity=”center_horizontal”

		 android:calendarViewShown=”false”

		 android:layout_margin=”10dp” />

</LinearLayout>

Here you’re using the android:hint attribute rather than android:text. This
displays the desired preset text but removes it as soon as the user starts typing a
value into the field. This edit_task.xml layout also uses the DatePicker view to
make date entry easier.

Buttons

You’ve already used buttons to build the current TimeTracker UI. Buttons are simply
TextViews that have a special background image—this background is actually an
XML file that lists the images that should be used for the different button states
(normal, hovered, focused, and pressed). This type of XML resource is called a state
list resource, and you’ll learn more about creating it later in this chapter.

1.	 Add a Finished button to the edit_task.xml layout:

<Button

	 android:id=”@+id/finished”

	 android:layout_width=”match_parent”

	 android:layout_height=”wrap_content”

	 android:text=”@string/finished” >

</Button>

2.	 Add an Edit button to the task_list.xml layout:

<Button

	 android:id=”@+id/edit”

	 android:layout_width=”match_parent”

	 android:layout_height=”wrap_content”

	 android:text=”@string/edit” >

</Button>

118  Chapter 4  Basic Views

Boolean Buttons

Buttons are convenient for indicating on/off states. Android has a number of views,
including toggle buttons, checkboxes, and radio buttons, that subclass the Button
class and present a toggle between a true value and a false value. In addition,
Android 4.0 introduced an option called the switch. Figure 4.4 shows all these
options for the 4.0 release of Android.

Spinners

A spinner looks like a button and displays a list of choices when pressed. Figure 4.5
shows an example of a spinner choice list. The options presented by a spinner
can be specified using the XML android:entries attribute, or you can use a data
adapter to load entries programmatically (you’ll learn more about loading entries
into views via data adapters in Chapter 6).

Figure 4.4  Boolean buttons
on Android 4.0

Figure 4.5  A spinner on
Android 4.0

Creating a Basic Form  119

Managing Settings

Often, you will want to give users the ability to change the general options
of your app through settings screens. It’s not necessary to create a form,
because Android includes a set of classes designed to create settings screens.
The basic class is the Preference, and there are several different preference
forms, mimicking the standard UI form widgets. The user’s preferences will
be saved to a key-value store that is local to your app.

Prior to Android 3.0 (Honeycomb), you would use a PreferenceActivity class
for displaying application preferences. Honeycomb and later releases use the
new PreferenceFragment class to handle settings preferences. However, this
class is not available in the compatibility library, so you will need to continue
using the PreferenceActivity class for applications that are designed to run
on Android 2.3 and earlier.

ScrollView

Adding entry fields to a form is simple, but what happens if you cannot fit all the
views on one screen? In these cases, it’s often useful to allow scrolling in order to
fit more elements in a single activity. To achieve this effect, you need to wrap your
views in a ScrollView container. A ScrollView allows you to create a view that is
larger than the physical screen on a device and scroll it to reveal the full contents.
ScrollView is actually a subclass of FrameLayout, but it adds the ability to scroll
its content. You typically place another layout container inside the ScrollView to
arrange the child views.

Tip:  You should never use a ListView inside a ScrollView.
The behavior will be erratic and unpleasant to the user. If you

find yourself wanting to use both, consider redesigning your app to use
one or the other.

120  Chapter 4  Basic Views

Since you want the user to enter an arbitrary amount of description text in
the time tracker, you’ll want to use a ScrollView so they can see it all. Wrap the
existing LinearLayout contents in a ScrollView:

<ScrollView xmlns:android=”http://schemas.android.com/apk/res/android”

	 android:layout_width=”match_parent”

	 android:layout_height=”match_parent”

	 android:fillViewport=”true” >

	 <LinearLayout>

	 <!-- Rest of code here -->

	 </LinearLayout>

</ScrollView>

This code should be self-explanatory by now. The ScrollView simply wraps
the LinearLayout, which contains the text and buttons you have already created.
Notice the android:fillViewPort attribute? This prevents some odd behavior,
which you’ll learn about next.

The fillViewPort attribute
A common issue you may experience with ScrollView is its interaction with child
views that are smaller than the display. When the child view is larger than the
display, the ScrollView behaves as expected, allowing you to scroll to see the full
view. However, when the child view is smaller than the display, the ScrollView
will automatically shrink itself to match the size of its content. The proper way to
handle this is to use the fillViewPort attribute, which will cause the child views
of a ScrollView to expand to the size of the display, if necessary; if they are already
larger than the display, nothing happens. A simple example will demonstrate.

Creating a Basic Form  121

A frequent task is displaying a block of text with a button at the bottom (such
as in a license agreement to which a user must agree). Figure 4.6 shows the desired
result: a long block of text that scrolls to reveal a button. When the text is smaller
than a single screen, the naive implementation of ScrollView results in Figure 4.7—
the button should still be pinned to the bottom of the screen but is instead directly
below the text. The ScrollView only takes up as much space as its content. To fix
this, set the fillViewPort attribute to true. Here is the code to correctly imple-
ment scrolling for any size of text, resulting in Figure 4.8.

<?xml version=”1.0” encoding=”utf-8”?>

<ScrollView xmlns:android=”http://schemas.android.com/apk/res/android”

	 android:layout_width=”fill_parent”

	 android:layout_height=”fill_parent”

	 android:fillViewport=”true” >

	 <LinearLayout

		 android:layout_width=”fill_parent”

		 android:layout_height=”wrap_content”

Figure 4.6  The desired
ScrollView result, with a long
block of text scrolling to reveal
a button

122  Chapter 4  Basic Views

		 android:orientation=”vertical” >

		 <TextView

			 android:layout_width=”fill_parent”

			 android:layout_height=”0dp”

			 android:layout_weight=”1.0”

			 android:text=”@string/hello” />

		 <Button

			 android:layout_width=”match_parent”

			 android:layout_height=”wrap_content”

			 android:text=”Button” />

	 </LinearLayout>

</ScrollView>

Try using ScrollView with and without the fillViewPort attribute to see how
its behavior changes.

Figure 4.7  The ScrollView
result if the fillViewPort
attribute is not set to true

Figure 4.8  Because the
android:fillViewPort attri-
bute was used, the button is
now correctly pinned to the
bottom of the screen.

Creating a Basic Form  123

Android phones feature large, high-resolution displays that are perfect for displaying
images in your application. Images are an important way of conveying information
to your users without explicitly stating it. Typically, images are displayed using the
built-in image view. This view takes care of the loading and optimizing of the image,
freeing you to focus on app-specific details like the layout and content. Unless you
need special optimizations for your application, you should take advantage of the
built-in image view whenever possible.

ImageView and Resources

The simplest way to display an image is to declare an ImageView in your layout file
and set its source to a resource in your project. Image resources are placed in the
/res/drawable folders. This example will display an image named “icon”:

<ImageView

	 android:id=”@+id/image”

	 android:layout_width=”match_parent”

	 android:layout_height=”match_parent”

	 android:scaleType=”center”

	 android:src=”@drawable/icon” />

Displaying Images

124  Chapter 4  Basic Views

The ImageView handles all the loading and scaling of the image for you. Note
the scaleType attribute? This defines how the images will be scaled to fit in your
layout. In the example, using scale type center, the image will be displayed at its
native resolution and centered in the view, regardless of how much space the view
consumes. Other scaling options fit the image to the dimensions of the image view
or scale the image based on the width and height of the device. Table 4.1 lists the
scale type options and how they alter the image.

Table 4.1  ImageView Scale Types

Scale Type Description

center Displays the image centered in the view with no scaling.

centerCrop Scales the image such that both the x and y dimensions are greater
than or equal to the view, while maintaining the image aspect
ratio; crops any part of the image that exceeds the size of the view;
centers the image in the view.

centerInside Scales the image to fit inside the view, while maintaining the
image aspect ratio. If the image is already smaller than the view,
then this is the same as center.

fitCenter Scales the image to fit inside the view, while maintaining the
image aspect ratio. At least one axis will exactly match the view,
and the result is centered inside the view.

fitStart Same as fitCenter but aligned to the top left of the view.

fitEnd Same as fitCenter but aligned to the bottom right of the view.

fitXY Scales the x and y dimensions to exactly match the view size; does
not maintain the image aspect ratio.

matrix Scales the image using a supplied Matrix class. The matrix can be
supplied using the setImageMatrix method. A Matrix class can be
used to apply transformations such as rotations to an image.

Tip:  The fitXY scale type allows you to set the exact size of the
image in your layout. However, be mindful of potential distortions
of the image due to scaling. If you’re creating a photo-viewing application,
you will probably want to use the center or fitCenter scale types.

Displaying Images  125

Figure 4.9  Examples of
android:scaleType attribute.
Top row (l-r) center,
centerCrop, centerInside.
Bottom row (l-r): fitCenter,
fitStart, fitEnd, fitXY.

Figure 4.9 shows examples of the scale types. Using the correct scale type is
important if you want to properly display images.

126  Chapter 4  Basic Views

Bitmaps

Images used in your application are stored in the /res/drawable folders. These fold-
ers follow the device-configuration naming scheme to provide different images for
different devices. Typically, you will create four different versions of each image and
place them in the following folders: drawable-ldpi, drawable-mdpi, drawable-hdpi,
and drawable-xhdpi. These represent the increasing resolutions of each device,
and appropriately sized images should be placed in each. Use the same filename
for each of the different versions, and then when you specify the drawable name,
the Android resources manager will choose the image from the appropriate folder.

It’s not always necessary to create an image for a particular resolution; Android
will display whatever image is the best match. In general, Android will prefer scal-
ing an image down in size so that images are always crisp and not blurred. By
default, you should create hdpi-resolution images. However, you should strive to
create resources for all resolutions to prevent unnecessary hardware scaling, which
slows down the drawing of your UI. Once your image resources are placed in the
res/drawable folders, you can reference them the same way you reference your
layout files: via the R.java file.

Including images in the res/drawable folders is a simple way of adding images
to your app. However, it’s also possible to create images at runtime and add them
to your layout. For example, you may want to download an image from the Inter-
net and display it to the user. To do this, you create a Bitmap object to encapsulate
the image, and then load it into your UI. The Bitmap class is simply an object that
references a bitmap image. You can use a BitmapFactory to create a bitmap image
from any source: a resource in your app, a file, or even an arbitrary InputStream.
A bitmap can then be loaded into an image view by calling setImageBitmap. Here
is an example:

Bitmap bitmap = Bitmap.createBitmap(100, 100, Bitmap.Config.ARGB_8888);

ImageView iv = (ImageView) findViewById(R.id.image);

iv.setImageBitmap(bitmap);

Note:  Image resources in your project should be in one of three
formats: PNG (preferred), JPEG (acceptable), and GIF (discouraged).
Of course, 9-patch images are also accepted.

Displaying Images  127

Drawables

Not all graphics need to be images—Android also lets you create graphics by using
XML or writing custom drawing code. You’ll learn more about creating custom
graphics using Canvas and other classes in Chapter 11. To create graphics using
XML, you use the Drawable class. A drawable represents something that can be
drawn on the screen. This can be an image, an XML resource, or a custom class.
The Drawable class is the general abstraction for representing all of these in your UI.

The Android framework makes extensive use of drawables for all the built-in
UI views. One of the most common is the Button class, which uses an XML file to
define the possible states a button can have. Here is an example XML file for Button:

<?xml version=”1.0” encoding=”utf-8”?>

<selector xmlns:android=”http://schemas.android.com/apk/res/android”>

	 <item android:state_pressed=”true”

		 android:drawable=”@drawable/button_pressed” />

	 <item android:state_focused=”true”

		 android:drawable=”@drawable/button_focused” />

	 <item android:state_hovered=”true”

		 android:drawable=”@drawable/button_hovered” />

	 <item android:drawable=”@drawable/button_normal” />

</selector>

This is called a StateListDrawable. It defines a set of drawables associated with
different states. In this example, there are four possible states the button can be in:
normal, hovered, focused, and pressed. Each item in the StateListDrawable defines
a drawable that will be displayed when the button is in the specified state. In this
case, the android:drawable attribute references an actual image drawable. The
StateListDrawable does not select the best matching item, but rather selects
the first item that meets the criteria for the current state. It performs this search
from top to bottom, so the order in which you place each item is important. Using
different drawables for button states provides feedback to the user when they are
interacting with the UI.

128  Chapter 4  Basic Views

There are more options than just defining states for a drawable. There are
formats that create simple transformations of an existing bitmap or add padding
and dithering to an image. You can combine several bitmaps to create a composite
image. Or you can use XML to actually draw a shape using the ShapeDrawable class.
You can add gradients, shadows, and rounded corners. The full range of XML draw-
able options is outside the scope of this book, but you should familiarize yourself
with the available options. If you find yourself contemplating creating custom
graphics to achieve the effects you want, consider using a drawable resource that
may already be available.

In addition to displaying images using drawables and bitmaps, you have the
option to create custom graphics using classes like Canvas, SurfaceView, and
TextureView. You’ll learn more about this in Chapter 11.

Note:  Drawing images into a view uses the system’s standard drawing
process. In Android versions earlier than 3.0, this process is not fully
hardware accelerated. Be aware that graphics-intensive applications
using this process will not perform well on older versions of Android.

Displaying Images  129

Creating Maps and
Displaying Websites

The typical Android device ships with a built-in GPS receiver and an always-on
network connection. This provides tremendous opportunities for developers to
leverage these features and create compelling location-aware applications. Android
devices include access to Google’s mapping technology, which you can use to add
full-fledged navigation to your app. And the built-in Webkit browser gives you the
power to create your own web-browsing applications. The next sections cover the
basics of using these advanced views.

MapView

Unlike other views and classes in Android, maps are not part of the core library.
They are provided by Google and are available to any application running on an
Android-compatible device. Notably, this does not include devices that do not
conform to the Android Compatibility Definition, such as the Kindle Fire. You will
be unable to use Google Maps on those devices. However, most devices meet the
Android specifications and support Google Maps integration.

You can set up your project to use maps as follows:

1.	 Visit the Google APIs site (http://code.google.com/android/add-ons/
google-apis/), and register for a map key. Map views are provided as part of
the com.google.android.maps package, and you will need to register for a
Google Maps API key in order to use this package.

2.	 Using the Android SDK Manager, download the Google APIs version of the
Android SDK that you intend to support. You can use this SDK to create a
new AVD image that supports MapView. Make sure you select a Google APIs
target for your image.

Tip:  Make sure you properly declare your permissions in the
application manifest file. If you want to use location features in your

application, you will need to request the location permissions in your app.

130  Chapter 4  Basic Views

http://code.google.com/android/add-ons/google-apis/
http://code.google.com/android/add-ons/google-apis/

3.	 Declare that your application requires the external Google Maps library
to run by adding this to your manifest under the <application> element:

<uses-library android:name=”com.google.android.maps” />

4.	 Google Maps requires a network connection, so you need to add the
android.permission.INTERNET permission to your manifest:

<uses-permission android:name=”android.permission.INTERNET” />

With those tweaks, you can use maps in your application. You add a map view
to your layout like you would add any other view:

<com.google.android.maps.MapView

	 android:id=”@+id/mapview”

	 android:layout_width=”fill_parent”

	 android:layout_height=”fill_parent”

	 android:apiKey=”Your Maps API Key”

	 android:clickable=”true” />

Note that the element name highlighted in the code is the full package name—
anytime you use a custom view that is not part of the core Android library, you need
to specify the full package name. You will need to declare the ID of the MapView as
mapview. Also, there are two new attributes here. The first is the apiKey attribute,
which is where you will place the Google Maps API key you get from Google. This
enables you to use Google’s mapping service. The second new attribute is the
clickable setting. Setting this to true allows the user to tap and scroll on the
MapView in your UI; setting it to false will prevent all interaction with the map.

Creating Maps and Displaying Websites  131

To actually use a map view in your layout, your activity will need to extend
MapActivity, which handles all the setup of the map view, and override the
isRouteDisplayed method, which is required by the Google Maps license agree-
ment and should return a Boolean that indicates whether there is active routing
information displayed on the map (Figure 4.10).

Figure 4.10  A MapView
example.

Note:  Because your activity must extend MapActivity, you cannot use
fragments from the compatibility library and use a map view at the

same time. For Android 3.0 and above, the fragment framework is built
in to the Activity class, so this is not an issue.

132  Chapter 4  Basic Views

WebView

Android includes a Webkit-based HTML rendering engine backed by the V8 JavaScript
interpreter. You can use these technologies in your own application by using the
WebView class. A web view renders HTML from web URLs, files stored on the device,
or arbitrary strings you create in your app. Android’s WebView includes standard
browser features like history, plugins, zooming controls, and JavaScript support. You
can also enable advanced gestures like pinch to zoom, providing easy navigation on
touchscreen devices.

Like the map view, the web view can be added to your application with a simple
XML element:

<WebView

	 android:id=”@+id/webview”

	 android:layout_width=”match_parent”

	 android:layout_height=”match_parent” />

You will need to enable the INTERNET permission in your manifest for your
web view to access online webpages. The web view does all downloading and
rendering of webpages, and you won’t need to extend any special activities or use
a special ID. With a web view in your UI, loading a webpage is as simple as adding
the following code:

WebView webView = (WebView) findViewById(R.id.webview);

webView.loadUrl(“http://www.google.com”);

With that, you can display any webpage to the user in your custom UI layout.
Note that the supplied content highlighted in the example is an actual webpage
URL. It’s also possible to load an arbitrary string containing HTML for display.

The web view defaults don’t include JavaScript or Flash support. To enable that,
you’ll need to use a WebSettings object:

WebSettings webSettings = webView.getSettings();

webSettings.setJavaScriptEnabled(true);

webSettings.setPluginState(WebSettings.PluginState.ON);

Creating Maps and Displaying Websites  133

This enables JavaScript and plugins—including Flash, if it’s installed—in the
web view. Adding zoom controls and pinch-to-zoom functionality is also simple:

webSettings.setSupportZoom(true);

webSettings.setBuiltInZoomControls(true);

The first line indicates that the web view will support zooming its contents. The
second line uses the web view’s built-in zoom controls for performing the zoom
(this includes the tap-to-zoom and pinch-to-zoom functionality).

Finally, you will likely want to override the loading of new URLs in your web
view. If you don’t do so, when the user taps on a new URL in the web view, the
default browser will open to load the new link. To force the load to occur in your
web view, add the following code:

webView.setWebViewClient(new WebViewClient() {

	 @Override

	 public boolean shouldOverrideUrlLoading(WebView view, String url) {

		 view.loadUrl(url);

		 return true;

	 }

});

134  Chapter 4  Basic Views

Here the URL loading behavior is overridden, and the new URL is loaded in the
existing web view. Returning true will discontinue the propagation of the event
up the view hierarchy and prevent the browser from opening. Figure 4.11 shows
the screen of this activity.

The web view allows you to present any HTML content to the user and pro-
vides an easy way to load pages from the Internet. You should take advantage of it
whenever your application needs to display HTML content.

Figure 4.11  The web view
displaying Google’s homepage

Creating Maps and Displaying Websites  135

Wrapping Up

This chapter introduced the basic building blocks used to build a form on Android.
You used these to refactor the TimeTracker app into a series of activities for display-
ing and entering tasks. You still need to save the data and display it, which we’ll
cover later in the book. In this chapter, you learned that

JJ Android provides a set of simple input widgets that you can use to build forms.

JJ Use the proper android:scaleType attribute when displaying an image
using ImageView.

JJ With the Drawable class, you can create complex image types using only XML.

JJ Adding a map to your application is as simple as extending MapActivity
and adding the map view to your layout.

JJ Android’s Webkit-based WebView class allows you to display any HTML content.

136  Chapter 4  Basic Views

This page intentionally left blank

5

Reusable UI

139

In the last chapter, you got an introduction to

some of the common views available on Android

and used those views to create a new interface for the

TimeTracker app. Now you will expand that knowledge to create

reusable components that you can use throughout the applica-

tion. In this chapter, you’ll learn that views can be abstracted and

reused in other layouts by using the <include> tag; that using the

ViewStub class can reduce the performance impact of the <include>

tag; that themes can be applied to your entire application with a

simple XML file; and that the new fragments APIs can be used to

further abstract your UI into logical blocks that are suitable for

phones, tablets, and televisions.

Reusing components is one of the hallmarks of good object-oriented design, and
Android supports abstracting your views to provide a similar level of componen-
tization. By separating your UI into discrete components, you can reuse them
throughout your app. This provides your app with a consistent look and makes
design changes much easier to implement.

The <include> Tag

Android provides a simple method for including one layout inside another: the
<include> tag. Using this tag, a different layout can be included in your view hier-
archy just as if it had been written in the original XML. This makes adding reusable
components to your UI a snap. Here is an example of the <include> tag:

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/
p apk/res/android”

	 android:layout_width=”match_parent”

	 android:layout_height=”match_parent”

	 android:orientation=”vertical” >

	 <include layout=”@layout/sub_layout” />

</LinearLayout>

The only required attribute of the <include> tag is the layout attribute (note
that it does not include the android: prefix). This attribute specifies the layout
file that will be included. In this example, a new layout called sub_layout will be
included in the existing layout. You can override layout_* attributes of the included
layout’s root view by adding them to the <include> tag. Only the android:layout_*
attributes and the android:id attribute can be overridden; all other attributes are
ignored. The new attributes will be applied only to the root node of the included
layout. This example shows another include tag, but this time with the android:id
and layout attributes overridden:

Abstracting Your Layouts

140  Chapter 5  Reusable UI

<include

	 android:id=”@+id/sub_id”

	 android:layout_width=”match_parent”

	 android:layout_height=”wrap_content”

	 layout=”@layout/sub_layout” />

After inflation, the ID of the sub_layout root element will be set to sub_id.
Similarly, its android:layout_width and android:layout_height attributes will be
changed to match_parent. Using the <include> tag allows you to abstract common
components in your UI and use them throughout your application.

The TimeTracker app could use a better-looking detail page:

1.	 Create a new layout named detail_item.xml. This layout will contain two
TextViews: one for the name of the field and one for the actual text. Here
is the code for the new detail_item.xml layout file:

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/
p apk/res/android”

	 android:id=”@+id/name”

	 android:layout_width=”match_parent”

	 android:layout_height=”wrap_content”

	 android:orientation=”horizontal”

	 android:gravity=”center_horizontal”

	 android:paddingLeft=”3dp”

	 android:paddingRight=”3dp” >

Note:  If you wish to override one of the android:layout_* attributes, then
you must override the android:layout_width and android:layout_height
attributes. Otherwise, the system will fail to apply your new layout
attributes. This is also required to properly align included views inside a
layout container (a LinearLayout, for example).

Abstracting Your Layouts  141

	 <TextView

		 android:id=”@+id/name”

		 android:layout_width=”0dp”

		 android:layout_height=”wrap_content”

		 android:layout_weight=”1”

		 android:text=”@string/detail_name” />

	 <TextView

		 android:id=”@+id/text”

		 android:layout_width=”0dp”

		 android:layout_height=”wrap_content”

		 android:layout_weight=”3”

		 android:text=”Text” />

</LinearLayout>

2.	 Open task_detail.xml, and remove the TextViews for task_name, task_date,
and task_desc. Then add three new detail_item.xml layouts as includes:

<include

	 android:id=”@+id/task_name”

	 android:layout_width=”match_parent”

	 android:layout_height=”wrap_content”

	 android:layout_marginBottom=”20dp”

	 layout=”@layout/detail_item” />

<include

	 android:id=”@+id/task_date”

	 android:layout_width=”match_parent”

	 android:layout_height=”wrap_content”

	 android:layout_marginBottom=”20dp”

	 layout=”@layout/detail_item” />

142  Chapter 5  Reusable UI

<include

	 android:id=”@+id/task_desc”

	 android:layout_width=”match_parent”

	 android:layout_height=”wrap_content”

	 android:layout_marginBottom=”20dp”

	 layout=”@layout/detail_item” />

By using the <include> tag, you now have six text fields instead of three, but
you have not changed the amount of XML in the task_detail.xml layout.

3.	 The final piece is adding a convenience method to set the fields, which is
a little more work:

private void setNameAndText(View v, int nameId, String value) {

	 TextView name = (TextView) v.findViewById(R.id.name);

	 TextView text = (TextView) v.findViewById(R.id.text);

	 String s = getResources().getString(nameId);

	 name.setText(s);

	 text.setText(value);

}

The setNameAndText method takes three parameters: the included view,
the ID of the name string resource, and the actual string value of the task
field. The method first retrieves the name and value TextViews. It then
gets the string resource of the name TextView and sets it. Finally, it sets
the value TextView.

You now have a much nicer display of task data, all using the same abstracted
layout.

Note:  View.findViewById rather than Activity.findViewById is used
here. They work the same way, but View.findViewById only searches
through the child views of that view.

Abstracting Your Layouts  143

The <merge> Tag

If you use the <include> tag often, your layouts may become overly nested and slow
down the drawing of the UI. The <merge> tag was created to address this problem. The
<merge> tag instructs the system to remove the topmost container of your sub-layout.
When you include a sub-layout, the contained views are merged into the primary
layout, but without the additional container view. For example, given this layout:

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/
p apk/res/android”

	 android:layout_width=”match_parent”

	 android:layout_height=”match_parent”

	 android:orientation=”vertical” >

	 <include layout=”@layout/merge_text”>

	 <include layout=”@layout/merge_text”>

</LinearLayout>

. . . and a sub-layout containing this:

<?xml version=”1.0” encoding=”utf-8”?>

<merge xmlns:android=”http://schemas.android.com/apk/res/android” >

	 <ImageView

		 android:id=”@+id/icon”

		 android:layout_width=”wrap_content”

		 android:layout_height=”wrap_content”

		 android:src=”@drawable/icon”

	 <TextView

		 android:id=”@+id/textView”

		 android:layout_width=”wrap_content”

		 android:layout_height=”wrap_content”

		 android:text=”Hello merge” />

</merge>

144  Chapter 5  Reusable UI

. . . the resulting layout hierarchy after the system merges the included sub-layout
looks like this:

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/
p apk/res/android”

	 android:layout_width=”match_parent”

	 android:layout_height=”match_parent”

	 android:orientation=”vertical” >

	 <ImageView

	 	 android:id=”@+id/icon”

	 	 android:layout_width=”wrap_content”

	 	 android:layout_height=”wrap_content”

	 	 android:src=”@drawable/icon”

	 <TextView

	 	 android:id=”@+id/textView”

	 	 android:layout_width=”wrap_content”

	 	 android:layout_height=”wrap_content”

	 	 android:text=”Hello merge” />

	 <ImageView

	 	 android:id=”@+id/icon”

	 	 android:layout_width=”wrap_content”

	 	 android:layout_height=”wrap_content”

	 	 android:src=”@drawable/icon”

	 <TextView

	 	 android:id=”@+id/textView”

	 	 android:layout_width=”wrap_content”

	 	 android:layout_height=”wrap_content”

	 	 android:text=”Hello merge” />

</LinearLayout>

Abstracting Your Layouts  145

The containing <merge> tag has been removed. Although this is a trivial example,
<merge> tags offer a convenient method for building complex layouts out of similar
components.

ViewStubs

While the <include> tag makes it easy to separate your UI into reusable compo-
nents, you may find that your included layouts are rarely used. Layouts such as
progress and error bars need to be available, but they are not shown during normal
usage. When included in your layout, these UI elements are still inflated, taking
CPU cycles and memory even if they are not shown. Luckily, Android provides an
abstraction to solve this problem.

The ViewStub class is an invisible view that takes no space in your layout. Like
the <include> tag, the ViewStub references an external layout that will be added
to your UI. However, unlike what happens with the <include> tag, the referenced
layout is not inflated until you specifically request it to be inflated. With a ViewStub,
the optional parts of your layout are available if you should need them, but they
are invisible otherwise, which speeds up the drawing of your UI.

Here is a simple ViewStub layout that is similar to the previous include example:

<ViewStub

	 android:id=”@+id/view_stub”

	 android:layout_width=”match_parent”

	 android:layout_height=”wrap_content”

	 android:inflatedId=”@+id/sub”

	 android:layout=”@layout/sub” />

Note:  Using the <merge> tag requires that the sub-layout be constructed
to fit in the parent layout; for example, you cannot use a layout

designed for a LinearLayout in a hierarchy containing a FrameLayout
(technically this isn’t prevented, but it doesn’t make much sense to do it).

146  Chapter 5  Reusable UI

View Visibility

Android views have three possible visibility states, each with a different
effect on your layout:

JJ View.VISIBLE: The view is visible to the user and takes up space in
the layout.

JJ View.INVISIBLE: The view is not visible to the user, but continues to take
space in the layout.

JJ View.GONE: The view is not visible to the user and consumes no space in
the layout.

Visibility can also effect layout performance. A view with visibility set to
GONE will not be included in the layout and drawing process.

To inflate the external layout referenced by your ViewStub, you can either inflate
it yourself or change its visibility:

// Inflate by changing the visibility of the ViewStub

((ViewStub) findViewById(R.id.view_stub)).setVisibility(View.VISIBLE);

// or by calling inflate

View v = ((ViewStub) findViewById(R.id.view_stub)).inflate();

The android:id attribute is not applied to the sub-layout (as it is when using
the <include> tag). Since you need to manually inflate the ViewStub, you have to be
able to reference its ID, but you can still set the ID of the inflated sub-layout using
the android:inflatedId attribute. Similarly, the android:layout_* attributes can
be overridden by setting the attributes on the ViewStub.

Abstracting Your Layouts  147

Abstracting Styles
and Themes

In addition to abstracting the layout of your UI, you can also abstract the styling
of the UI. Just as you can separate layout from design in websites using Cascading
Style Sheets, you can use Android’s styles and themes to separate the design of
your views from their content. This allows you to quickly change the look of your
app without updating dozens of individual layout files.

Styles

Throughout this book, you have applied appearance-altering attributes to your
views. This is convenient, but it quickly becomes tedious when you have larger
layouts. Android provides the style attribute, which allows you to quickly apply
a new set of attributes to your views.

Styles are defined in an XML file and are applied to views by using the style
attribute. For example, rather than writing this:

<TextView

	 android:layout_width=”match_parent”

	 android:layout_height=”wrap_content”

	 android:textColor=”#FF0000”

	 android:text=”@string/hello” />

. . . you can move the highlighted attributes into a style and place the style in an
XML file in the res/values folder. This file can have any name, and you can have
multiple separate style files. For example, imagine a style file named styles.xml.
In this file is a <resources> tag with a series of <style> elements. Here is a style
named RedText:

<?xml version=”1.0” encoding=”utf-8”?>

<resources>

	 <style name=”RedText” >

		 <item name=”android:layout_width”>match_parent</item>

		 <item name=”android:layout_height”>wrap_content</item>

		 <item name=”android:textColor”>#FF0000</item>

	 </style>

</resources>

148  Chapter 5  Reusable UI

Each attribute is listed as an <item> element. The RedText style specifies that the
android:textColor attribute will be set to red, the android:layout_width attribute
to match_parent, and the android:layout_height attribute to wrap_content.

Now you can write the following, replacing the text view attributes with a single
style attribute referencing the new style:

<TextView

	 style=”@style/RedText”

	 android:text=”@string/hello” />

Note that the style attribute has no android: prefix. By using the <style>
tag, you can quickly make changes to the look of your app without updating all
the layout files.

Styles can inherit from other styles by adding the parent attribute to the <style>
tag. Here is a new style that inherits from the system-default text appearance:

<style name=”GreenText” parent=”@android:style/TextAppearance”>

	 <item name=”android:textColor”>#00FF00</item>

</style>

The Android platform’s default styles are available in the R.style class. When
referencing them in XML, you use the @android: prefix. Eclipse will autocomplete
these attributes for you. By making styles inherit from the platform-default styles,
you will ensure that your app looks like a native Android application.

Tip:  Attributes that are declared in a style but that aren’t
applicable to a view will simply be ignored by that view. For
example, a LinearLayout does not display text and so does not accept the
android:text attribute. If a style containing the android:text attribute is
applied to a LinearLayout, the android:text attribute will be ignored when
the other styles are applied.

Abstracting Styles and Themes  149

When styles inherit from your own styles, a shortcut is available that doesn’t
require the parent tag: You just include the parent style in the new style name, sepa-
rated with periods. For example, you could create a new style named RedText.Small
that inherits from RedText:

<style name=”RedText.Small” >

	 <item name=”android:textSize”>8dip</item>

</style>

The TimeTracker app’s detail text views could still use a little more styling.

1.	 Create a styles.xml file in the res/values folder, and create the following
styles:

<?xml version=”1.0” encoding=”utf-8”?>

<resources>

	 <style name=”detail_name”>

		 <item name=”android:gravity”>right|bottom</item>

		 <item name=”android:textAppearance”>?android:
		 p attr/textAppearanceSmall</item>

		 <item name=”android:layout_marginRight”>3dp</item>

	 </style>

	 <style name=”detail_text”>

		 <item name=”android:gravity”>left|bottom</item>

		 <item name=”android:textAppearance”>?android:
		 p attr/textAppearanceLarge</item>

	 </style>

	 <style name=”custom_button”>

		 <item name=”android:layout_marginRight”>3dp</item>

		 <item name=”android:layout_marginLeft”>3dp</item>

	 </style>

</resources>

150  Chapter 5  Reusable UI

These styles will be applied to the name and text fields of the detail_item.xml
layout. The custom_button style adds some margins from the edges of the
screen and will be applied to all the buttons in the app.

2.	 Open the detail_item.xml file, and set the style of the two TextViews to
the new styles defined in styles.xml:

<TextView

	 android:id=”@+id/name”

	 style=”@style/detail_name”

	 android:layout_width=”0dp”

	 android:layout_height=”wrap_content”

	 android:layout_weight=”1”

	 android:text=”@string/detail_name” />

<TextView

	 android:id=”@+id/text”

	 style=”@style/detail_text”

	 android:layout_width=”0dp”

	 android:layout_height=”wrap_content”

	 android:layout_weight=”3”

	 android:text=”@string/text” />

3.	 Apply the new button style to all the buttons in the app. Here is the style
applied to the Edit button in task_detail.xml:

<Button

	 android:id=”@+id/edit”

	 style=”@style/custom_button”

	 android:layout_width=”match_parent”

	 android:layout_height=”wrap_content”

	 android:text=”@string/edit” >

</Button>

Abstracting Styles and Themes  151

Like all resources, styles can be applied based on the device hardware configura-
tion. By creating different style files and placing them in the appropriate resource
folder, you can create different appearances for your app on different devices.

Themes

Styles applied to a view apply only to that view and not to the children of that view.
Even if you apply the style to a ViewGroup such as a LinearLayout, the style will
only apply to that view. To apply the style to the child views, you would need to
set the style attribute for each of those children.

It’s possible to apply a style to all the views of an activity or application with-
out specifying the style attribute of all the views. You do this by applying the
android:theme attribute to the <activity> or <application> elements of your
application manifest. This is known as a theme. Here is an example:

<activity

	 android:name=”.ExampleActivity”

	 android:theme=”@android:style/Theme.Holo” >

</activity>

The Holo theme, which is the default theme for all applications targeted at
Android 3.0 and higher, will be applied to all elements of this activity.

152  Chapter 5  Reusable UI

Using Fragments

When Android made the jump from phones to tablets, Google had to redesign the
architecture of applications because Android’s existing UI elements were insuf-
ficient to create the type of information-rich interfaces required by tablets. To
address this issue, Google introduced the fragments framework in Android 3.0.
Fragments provide a method for decomposing your UI into its constituent parts
so that each may be presented in a manner that is right for the device it’s running
on (Figure 5.1). On a phone, the list view would consume the whole screen, and
tapping an item would take the user to a new screen presenting content. But on a
tablet, the list view is simply a part of the display, with the content being displayed
simultaneously. As you can see in Figure 5.1, the list view and the content are each
contained in a fragment.

Fragments are the future of building interfaces on Android. They allow you to
provide simple UI elements and arbitrarily combine them into new forms. Android
now uses them extensively, and you should strive to do the same in your own
applications. The key to using fragments is to understand how they differ from
and interact with activities.

Figure 5.1  Fragments allow
you to divide your UI into
logical pieces and display them
differently for each device.
Left: Two fragments are
displayed at once on a tablet
device. Selecting a list item will
change the content displayed.
Center: The list fragment takes
the entire display on a phone.
Right: The detail fragment
showing content is reached by
selecting an item from the list
fragment on the phone.

Using Fragments  153

Layout

Adding a fragment to your layout requires a simple XML element:

<FrameLayout xmlns:android=http://schemas.android.com/
p apk/res/android

	 android:layout_width=”match_parent”
	 p android:layout_height=”match_parent”>

	 <fragment class=”com.example.ExampleFragment”

		 android:id=”@+id/example”

		 android:layout_width=”match_parent”
		 p android:layout_height=”match_parent” />

</FrameLayout>

Note that the <fragment> tag is lowercase and has a class attribute. This attri-
bute must reference a fully qualified Java class that extends the Fragment class.
The class attribute is not required, however; when it is left out, you need to add
the fragment at runtime using the FragmentManager. The FragmentManager is the
interface for working with fragments in Java code—you use it to find, add, remove,
and replace fragments. You’ll see more examples of the FragmentManager shortly.

Fragment Life Cycle

Fragments always run within the context of an existing activity. The life cycle of a
fragment is similar to that of an activity, but with a few added callbacks that handle
events such as attaching to the host activity. Table 5.1 summarizes the life cycle
callbacks of fragments and how they correspond to activity callbacks.

You only need to override the onCreateView method of a fragment to display
its UI. Here is an example fragment that shows a simple TextView:

public class SimpleTextFragment extends Fragment {

	 @Override

	 public View onCreateView(LayoutInflater inflater,
	 p ViewGroup container,

		 Bundle savedInstanceState) {

		 TextView tv = new TextView(getActivity());

154  Chapter 5  Reusable UI

		 tv.setText(“Hello Fragment!”);

		 return tv;

	 }

}

Table 5.1  Fragment Life Cycle

Activity Callback Fragment Callback Description

onCreate onAttach Called when the fragment is first associated with an activity.

onCreate Called to initialize the fragment. Note that the host activity may not
have finished its onCreate call.

onCreateView Called to create the view hierarchy of the fragment. This method
should return the inflated layout for the fragment. Note that it is
not required that the fragment have a UI component.

onActivityCreated Called when the host activity has finished its onCreate callback. Used for
any fragment initialization that requires the host activity to be initialized.

onStart onStart Called when the fragment is visible to the user. Generally called at the
same time the host activity’s onStart method is called.

onResume onResume Called when the fragment is visible to the user and actively running. Gen-
erally called at the same time the host activity’s onResume method is called.

onPause onPause Called when the fragment is no longer interacting with the user, either
because the activity is paused or the fragment is being replaced. Gener-
ally called at the same time the host activity’s onPause method is called.

onStop onStop Called when the fragment is no longer visible to the user, either because
the host activity is stopped or the fragment is being replaced. Generally
called at the same time the host activity’s onStop method is called.

onDestroy onDestroyView Called when the view returned by onCreateView is detached from
the fragment.

onDestroy Called when the fragment is no longer used. You should clean up any
remaining states here.

onDetach Called when the fragment is no longer attached to its host activity.

Using Fragments  155

Android contains a few convenience fragments for displaying common views
like lists and web content. These fragments take care of creating their views for
you. When using them, you will not need to override the onCreateView method.

It should be easy to refactor the TimeTracker app to use fragments:

1.	 Create a new class called TaskListFragment that extends ListFragment. The
only method you need to override is the onCreateView method:

@Override

public View onCreateView(LayoutInflater inflater,
p ViewGroup container,

		 Bundle savedInstanceState) {

	 return inflater.inflate(R.layout.task_list, null);

}

This just returns the existing task_list.xml layout as the view for the fragment.

2.	 Create another fragment called TimerFragment that extends Fragment. This
will contain all the setup of the button views that was previously done in
TimeTrackerActivity, along with the new setNameAndText method. Remove
them from TimeTrackerActivity:

public class TimerFragment extends Fragment {

	 @Override

	 public View onCreateView(LayoutInflater inflater,
	 p ViewGroup container, Bundle savedInstanceState) {

		 return inflater.inflate(R.layout.task_detail, null);

	 }

Tip:  Fragments must have a default no-argument constructor.
The default constructor is used by the system to instantiate frag-

ments when their host activities are re-created. Failing to provide a default
constructor will not generate an error, but it will result in unexpected behav-
ior in your application. If you need to pass arguments to your fragments at
construction, it’s recommended you use the setArguments method.

156  Chapter 5  Reusable UI

	 private void setNameAndText(View v, int nameId,
	 p String value) {

		 TextView name = (TextView) v.findViewById(R.id.name);

		 TextView text = (TextView) v.findViewById(R.id.text);

		 String s = getResources().getString(nameId);

		 name.setText(s);

		 text.setText(value);

	 }

	 @Override

	 public void onActivityCreated(Bundle savedInstanceState) {

		 super.onActivityCreated(savedInstanceState);

		 TimeTrackerActivity activity = (TimeTrackerActivity)
		 p getActivity();

		 // Initialize the timer

		 TextView counter = (TextView)
		 p activity.findViewById(R.id.counter);

		 counter.setText(DateUtils.formatElapsedTime(0));

		 Button startButton = (Button)
		 p activity.findViewById(R.id.start_stop);

		 startButton.setOnClickListener(activity);

		 Button editButton = (Button)
		 p activity.findViewById(R.id.edit);

		 editButton.setOnClickListener(activity);

		 View v = activity.findViewById(R.id.task_name);

		 String text = getResources().getString
		 p (R.string.task_name);

		 setNameAndText(v, R.string.detail_name, text);

		 v = activity.findViewById(R.id.task_date);

		 text = DateUtils.formatDateTime(activity, date,
		 p TimeTrackerActivity.DATE_FLAGS);

Using Fragments  157

		 setNameAndText(v, R.string.detail_date, text);

		 v = activity.findViewById(R.id.task_desc);

		 text = getResources().getString(R.string.description);

		 setNameAndText(v, R.string.detail_desc, text);

	 }

}

3.	 The layout used by TimeTrackerActivity is just the new TimerFragment.
Save this in the main.xml file:

<?xml version=”1.0” encoding=”utf-8”?>

<FrameLayout xmlns:android=”http://schemas.android.com/
p apk/res/android”

	 android:layout_width=”fill_parent”

	 android:layout_height=”fill_parent” >

	 <fragment

		 android:id=”@+id/timer_fragment”

		 android:layout_width=”match_parent”

		 android:layout_height=”match_parent”

		 class=”com.example.TimerFragment” />

</FrameLayout>

158  Chapter 5  Reusable UI

You should now have an app that looks like Figure 5.2. You won’t yet be able to
access the timer list, but in the next chapter you will add some navigation so that
you can quickly switch between the task list and the timer.

Fragment Transactions

Because multiple fragments can be displayed onscreen at once, it’s possible to add
and remove them without switching activities. For example, the content portion
of your app (represented by a fragment) can be replaced with a different fragment
when the user selects a different item from a list fragment. This allows you to create
dynamic interfaces that change content as the user interacts with them.

Figure 5.2  The timer layout
of the TimeTracker app

Using Fragments  159

To make changes to the existing fragments in your UI, you must encapsulate
them within a transaction. A fragment transaction, which is similar to a database
transaction, batches all the operations that will affect the fragments (like add-
ing or removing fragments and transitions) and performs them at the same time.
Transactions are performed using the FragmentManager:

FragmentManager fm = getFragmentManager()

FragmentTransaction ft = fm.beginTransaction();

ExampleFragment fragment = new ExampleFragment();

ft.add(R.id.fragment_container, fragment);

ft.commit();

Here, a new fragment is added to the UI, placed in the view, and given the
ID fragment_container. The FragmentManager also provides the interface for
retrieving the existing fragments in your layout. Fragments can be referenced by
their ID or by a tag string:

fm.findFragmentById(R.id.frag);

fm.findFragmentByTag(“tag”);

Note:  Fragments can be added to or removed from your layouts only
when the activity is in the resumed state.

160  Chapter 5  Reusable UI

Fragment Back Stack

Like activities, fragments can have a back stack. However, you have direct control
over which fragments are added to the stack and when they are added. Before
committing a transaction, you can add the transaction to the back stack. Here is
an example:

FragmentManager fm = getFragmentManager()

FragmentTransaction ft = fm.beginTransaction();

ExampleFragment fragment = new ExampleFragment();

ft.add(R.id.fragment_container, fragment);

ft.addToBackStack(null); // takes a string name argument, 	
p not used here

ft.commit();

Later, when the user presses the Back button, the fragment transaction will
be reversed. This actually reverses all the steps of the transaction, including any
transitions.

You also have the option of popping transactions off the back stack yourself
by calling the FragmentManager.popBackStack() method, which simply pops the
last transaction off the back stack; it takes not parameters. Using popBackStack
gives you more control over how your UI behaves, rather than just relying on the
forward and backward paradigm.

Using Fragments  161

Wrapping Up

In this chapter, you learned the basics of abstracting and componentizing your UI.
By breaking a complex layout into components and altering a few key layout files,
you can quickly change the look and feel of your UI. You also learned the basics
of Android’s powerful fragments framework. Fragments allow you to abstract
your app into functional components and then combine them to create complex
layouts appropriate for phones, tablets, and televisions. Here are the highlights:

JJ You can include one layout in another by using the <include> and <merge> tags.

JJ Rarely used layouts can slow down the drawing of your UI. For those situ-
ations, use a ViewStub.

JJ You can change the look and feel of your entire app by creating and applying
a theme to your activities.

JJ You should use fragments to break an app into separate, reusable components.

JJ Changes to the displayed fragments must be performed in a fragment
transaction.

162  Chapter 5  Reusable UI

This page intentionally left blank

6

Navigation and
Data Loading

165

This chapter builds on previous chapters by showing

you how to create navigation within your app. You will

learn that the action bar replaces the options menu and creates

consistent functionality across Android apps; that tabbed inter-

faces leverage the action bar, but you need to fall back to TabWidget

on older versions of Android; that the ViewPager class lets you add

side-to-side swiping navigation to your application; that adapters

are used to bind your data to your displayed views; and that load-

ers offer a simplified method of obtaining the data for your UI.

Starting with version 3, Android gained a major new UI paradigm called the action
bar (Figure 6.1). The action bar sits at the top of the screen and contains the app
name, the app icon, navigation elements (such as tabs), and a series of buttons for
quick actions. Using this native UI element, Android developers can quickly add
functionality to their apps and create a platform-consistent user interface.

Action Items

The action bar replaces the traditional menu found on pre-3.0 versions of Android.
Instead of a hidden set of options revealed by pressing the menu button, menu
options are presented as buttons on the action bar. Not all menu options can fit, of
course, so by default menu options are placed in an overflow menu that appears at
the end of the action bar. Tapping the overflow menu drops down a list revealing
the remaining options. When developing an app, the developer chooses which
options should be shown as actions on the action bar.

Figure 6.1  The action bar
running on Android 4.01.
Shown are a single action item,
the overflow menu, and the
drop-down that appears after
tapping the overflow menu.

Tip:  The action bar is automatically added to your app if it’s
using one of the Holo themes. Theme.Holo is the default for all apps

with a target SDK version of 11 or higher (Android version 3.0).

Introducing the Action Bar

166  Chapter 6  Navigation and Data Loading

The buttons visible on the action bar are called action items. They represent
options defined in the menu.xml file (you learned how to create menus in Chapter 3).
There is a new option that controls whether the menu option is presented as an action
item or is pushed into the overflow group: the android:showAsAction attribute. Set-
ting this attribute to always will make the menu item always appear on the action bar,
but this is discouraged, as there may not be room for all menu items on devices with
smaller screens. In that situation, the action items will be presented as a horizontally
scrolling list. For this reason, it’s recommended you set the android:showAsAction
attribute to ifRoom, which will display the menu item as an action item only if there
is enough room on the display. On smaller screens, the actions will be collapsed into
the overflow menu.

Here is an example menu file with a single item:

<?xml version=”1.0” encoding=”utf-8”?>

<menu xmlns:android=”http://schemas.android.com/apk/res/android” >

	 <item

		 android:id=”@+id/search”

		 android:title=”Search”

		 android:icon=”@android:drawable/ic_menu_search”

		 android:showAsAction=”ifRoom|withText”

	 />

</menu>

In this example, a search menu item will be displayed as an action item. Note
that the android:showAsAction attribute also has the withText option set—this
declares that both the icon and the title text of the menu item will be displayed in
the action bar. The action items are added to the action bar automatically when
you inflate your menu:

@Override

public boolean onCreateOptionsMenu(Menu menu) {

	 MenuInflater inflater = getMenuInflater();

	 inflater.inflate(R.menu.menu, menu);

	 return true;

}

Introducing the Action Bar  167

Split Action Bar

Android 4.0 introduced a new option for the action bar: the split action bar. In this mode, the action bar is
split between the top and bottom of the screen, with navigational elements at the top and action items at
the bottom (Figure 6.2). This mode is found throughout Google’s applications, including in the Gmail app.

To enable this, add an android:uiOptions attribute to the <application> or <activity> elements in the
AndroidManifest.xml file, and set it to splitActionBarWhenNarrow. Here’s an example, enabling a split action
bar on an activity:

<activity

	 android:name=”.SampleActivity”

	 android:uiOptions=”splitActionBarWhenNarrow” >

</activity>

On narrow-screen devices, the action bar will now show the action items in a bar along the bottom of the
screen. On larger devices, like tablets, the actions will continue to be displayed at the top of the screen. Note
that you can safely include the android:uiOptions attribute in your manifest for older versions of Android—
unknown manifest attributes will be ignored by the system.

Figure 6.2  A split action bar
with tabs

168  Chapter 6  Navigation and Data Loading

The overflow menu will be added to the action bar if none of the menu items
are action items.

Action Views

The action bar is more than just a row of buttons. It can also display interactive
widgets called action views, which provide enhanced functionality beyond just a
tappable button. A good example is the search widget: By default, a search icon is
displayed; when the user presses the icon, a search widget appears, providing an
area where the user can type a query (Figure 6.3). You will see this used throughout
Android apps to provide rich functionality beyond simple option selection.

Take a look at the code for the action view shown in Figure 6.3. To make this
action item into an action view, add the android:actionViewClass attribute and
set it to the desired view:

Figure 6.3  The search
icon expands into a search
action view.

Note:  The action bar API is not available on Android versions before 3.0.
If you want to use the action bar in older versions of Android, you will
have to create your own layout and populate it with action items.
Alternatively, you can use the open-source library ActionBarSherlock
(http://actionbarsherlock.com).

Introducing the Action Bar  169

http://actionbarsherlock.com

<?xml version=”1.0” encoding=”utf-8”?>

<menu xmlns:android=”http://schemas.android.com/apk/res/android” >

	 <item

		 android:id=”@+id/search”

		 android:title=”Search”

		 android:icon=”@android:drawable/ic_menu_search”

		 android:showAsAction=”ifRoom|collapseActionView”

		 android:actionViewClass=”android.widget.SearchView”

	 />

</menu>

Here, the search icon will activate the Android-provided SearchView widget,
which displays a text-entry box. Note that the android:showAsAction attribute
has a new setting: collapseActionView. This attribute is new to Android 4.0 and
will collapse the action view into just an action item. Otherwise, the search widget
would consume space on the action bar even when not in use.

The ActionProvider Class

Action views provide a richer widget set for the action bar, but they still use the
default event handling. The ActionProvider class allows you to create an action bar
component with a custom layout and custom event handling beyond the standard
button press. You can optionally create a submenu, which can be triggered from
both the action bar and the overflow menu. Here is an example action provider:

<?xml version=”1.0” encoding=”utf-8”?>

<menu xmlns:android=”http://schemas.android.com/apk/res/android”>

	 <item android:id=”@+id/share”

		 android:title=”@string/share”

		 android:showAsAction=”ifRoom”

	 	 android:actionProviderClass=”android.widget.	
	 	 p ShareActionProvider” />

</menu>

170  Chapter 6  Navigation and Data Loading

In this example, the new ShareActionProvider is used to create a sharing
interaction that is simpler than the standard sharing intent. Rather than creating
a pop-up dialog window, the ShareActionProvider creates a short drop-down list
of just the most-used sharing applications (Figure 6.4). This is possible using the
ActionProvider’s support for custom layouts and events. ActionProvider is a new
class available in Android 4.0, so you will need to ensure that your app functionality
does not rely on it if compatibility with earlier versions of Android is important.

The action bar is a great way to quickly add functionality to your application
while maintaining a native platform look and feel. It provides a unified interface
for the common interaction patterns found on Android. And as you will soon see,
the action bar also provides basic navigation to your application.

Figure 6.4  The ShareActionProvider
class is easier to use than the standard
sharing intent.

Introducing the Action Bar  171

Navigating Your App

In mobile applications, speed is essential. Users expect to navigate your application
quickly and won’t wait for needless animations or screen changes. Using activi-
ties, you can add multiple screens to your app, but switching between them is not
particularly fast. The solution to this problem is to add a navigation element like
tabs to your UI. Tabs allow the user to quickly navigate between multiple screens
of your app with a single tap.

Action Bar Navigation

The action bar is the preferred way to add a tabbed interface to your UI (Figure 6.2
shows an example of the action bar with tabs). A tabbed action bar is especially
useful when combined with the split navigation mode, and you can create this
slick interface with just a few lines of code. There are two primary types of action
bar navigation: tabs and lists.

Tab navigation mode
To create a tabbed interface, you set the navigation mode for the action bar in the
onCreate method of your activity:

public void onCreate(Bundle bundle) {

	 super.onCreate(bundle);

	 final ActionBar bar = getActionBar();

	 bar.setNavigationMode(ActionBar.NAVIGATION_MODE_TABS);

}

You then just have to add the tabs and their listeners to the action bar:

Tab t = bar.newTab();

t.setText(“Tab Text”);

t.setTabListener(this);

bar.addTab(bar.newTab()

172  Chapter 6  Navigation and Data Loading

In this example, this is passed to the setTabListener method, indicating that
the activity implements the ActionBar.TabListener interface. This interface is
used to provide implementations for the tab-handling callbacks. In the activity,
you implement the logic to swap fragments in your UI. The TabListener interface
requires three callbacks to be implemented:

public void onTabSelected(ActionBar.Tab tab, FragmentTransaction ft) {

	 // Called when a tab is selected

	 ft.replace(R.id.content, fragment, null);

}

public void onTabUnselected(ActionBar.Tab tab, FragmentTransaction ft) {

	 // Called when current tab is no longer selected

	 ft.remove(fragment);

}

public void onTabReselected(ActionBar.Tab tab, FragmentTransaction ft) {

	 // Called when a tab is already selected and user presses it again

}

In this example, the content view is replaced with a new fragment when the
users selects a tab, and that fragment is removed when the tab is no longer selected.

Navigating Your App  173

List navigation mode
An alternative to the tabbed interface is the drop-down list interface (Figure 6.5).
This is a good choice when the number of possible navigation options is too large
to make tabs practical. You enable list navigation by setting the navigation mode
on the ActionBar:

final ActionBar bar = getActionBar();

bar.setNavigationMode(ActionBar.NAVIGATION_MODE_LIST);

bar.setListNavigationCallbacks(mSpinnerAdapter, this);

You will need to supply both a SpinnerAdapter to bind data to the list and an
implementation of the OnNavigationListener interface to handle callbacks trig-
gered when a list item is selected. You will learn more about data binding later in
this chapter.

Figure 6.5  List navigation
mode displays a drop-down
list instead of tabs.

174  Chapter 6  Navigation and Data Loading

TabWidget

The action bar is convenient for adding tabs to the top of your app. But if you need
to add tabs to a sub-view of your app (for example, a sidebar in a tablet app), you
can create a tab-style interface by using a TabWidget. TabWidgets are also used for
adding tabbed interfaces to apps written for Android versions prior to 3.0, since
the action bar is not available on those versions.

To implement tabs using a TabWidget, you need both a TabWidget and a TabHost.
TabHost is a container that you set as the root of your layout hierarchy. Inside it,
you place a FrameLayout and a TabWidget. The TabWidget is the switchable list
of labeled tabs. Typically you would arrange the FrameLayout and the TabWidget
inside a LinearLayout, but you’re not required to. Unfortunately, this style of tabs
is not completely compatible with the fragments API and requires some hacks to
integrate with fragments.

Here is an example implementation of a tab layout:

<TabHost

	 xmlns:android=http://schemas.android.com/apk/res/android

	 android:id=”@android:id/tabhost”

	 android:layout_width=”match_parent”

	 android:layout_height=”match_parent”>

	 <LinearLayout

		 android:orientation=”vertical”

		 android:layout_width=”match_parent”

		 android:layout_height=”match_parent” >

		 <TabWidget

			 android:id=”@android:id/tabs”

			 android:orientation=”horizontal”

Note:  Prior to Android 3.0, you would use a TabActivity class to
set up tabbed interfaces. This class is now deprecated, and you should
write your own handlers for tabs.

Navigating Your App  175

			 android:layout_width=”match_parent”

			 android:layout_height=”wrap_content”

			 android:layout_weight=”0”/>

		 <FrameLayout

			 android:id=”@android:id/tabcontent”

			 android:layout_width=”0dp”

			 android:layout_height=”0dp”

			 android:layout_weight=”0”/>

		 <FrameLayout

			 android:id=”@+id/realtabcontent”

			 android:layout_width=”match_parent”

			 android:layout_height=”0dp”

			 android:layout_weight=”1”/>

	 </LinearLayout>

</TabHost>

Note that the IDs of the TabHost and TabWidget are system IDs—the tab classes
require this to properly function. When the user changes tabs, the system will
find the FrameLayout with ID android:id/tabcontent and change its content.
However, those APIs are deprecated, and you should use fragments to swap the
layouts in your UI. To handle this, you set the size of the tabcontent layout as 0
and instead place all your content in a second FrameLayout (this example uses the
ID realtabcontent).

Tip:  You should still place a FrameLayout with ID
android:id/tabcontent in your layout to prevent errors.

176  Chapter 6  Navigation and Data Loading

To add the tabs to your layout, you define them in the onCreate method of
your activity:

mTabHost = (TabHost) findViewById(android.R.id.tabhost);

mTabHost.setup();

mTabHost.setOnTabChangedListener(new TabHost.OnTabChangeListener() {

	 @Override

	 public void onTabChanged(String tabId) {

		 // View-switching code goes here

	 }

});

mTabHost.addTab(mTabHost.newTabSpec(“first”).setIndicator(“First”).
p setContent(new DummyTabFactory(this)));

mTabHost.addTab(mTabHost.newTabSpec(“second”).
p setIndicator(“Second”).setContent(new DummyTabFactory(this)));

mTabHost.addTab(mTabHost.newTabSpec(“third”).setIndicator(“Third”).
p setContent(new DummyTabFactory(this)));

You are required to call setup on the TabHost before you add any tabs to it.
You register a listener for changes in the active tab. The onTabChanged method
will be called every time the user presses one of the tabs. You then add the tabs
to the TabHost.

Finally, notice the DummyTabFactory. This is another hack that enables you to
use fragments with the TabWidget. The following example has a simple imple-
mentation that just returns a 0-sized view to match the API required by the
TabContentFactory interface:

public static class DummyTabFactory implements
p TabHost.TabContentFactory {

	 private final Context mContext;

	 public DummyTabFactory(Context context) {

		 mContext = context;

	 }

Navigating Your App  177

Page 1 Page 2

Screen

Page 3 Page 4

Swipe

	 @Override

	 public View createTabContent(String tag) {

		 View v = new View(mContext);

		 v.setMinimumWidth(0);

		 v.setMinimumHeight(0);

		 return v;

	 }

}

You can now implement the logic in onTabChanged to swap in a new layout
(using fragments) when the user presses a tab.

ViewPager

When Google released Android 3.0, they also released the compatibility library—
a collection of classes that brings the new APIs to older platforms. In addition,
the compatibility library allows Google to ship new classes that they don’t yet
want to add to the official Android release. The compatibility library contains
one such class named the ViewPager. The ViewPager is similar to TabHost, but in
the ViewPager—instead of pressing labeled tabs to switch views—the user drags
the entire display to the left or right to switch pages (Figure 6.6). This is the same
behavior used by the Android home screen to switch “pages.” This new behavior
is available to any application that implements the ViewPager class.

Figure 6.6  In this illustration
of ViewPager behavior, new
pages are accessed by swiping
left and right.

178  Chapter 6  Navigation and Data Loading

ViewPager uses fragments to change the displayed content. To use the ViewPager,
follow these steps:

1.	 Include the compatibility library JAR (Java Archive) in your application’s
lib/ folder.

2.	 Create a layout containing the ViewPager tag. ViewPager is a ViewGroup, so
you can use it as the root element of the layout:

<?xml version=”1.0” encoding=”utf-8”?>

<android.support.v4.view.ViewPager

	 xmlns:android=”http://schemas.android.com/apk/res/android”

	 android:id=”@+id/pager”

	 android:layout_width=”match_parent”

	 android:layout_height=”match_parent” />

3.	 Create a new class that extends the FragmentPagerAdapter class available
in the compatibility library. You will have to use the compatibility library
version of all classes.

public class SamplePagerAdapter extends FragmentPagerAdapter {

	 public SamplePagerAdapter(android.support.v4.app.
	 p FragmentManager fm) {

		 super(fm);

	 }

}

4.	 Override the getCount and getItem methods. The getCount method should
return the total number of fragments in the pager; the getItem method
returns the fragment at the specified position. These methods will be called
as the user scrolls through the pages. Adjacent fragments are acquired before
they are visible so that the UI can display them while the user is paging.

@Override

public int getCount() {

	 return 3;

}

Navigating Your App  179

@Override

public Fragment getItem(int position) {

	 return SimpleTextFragment.newInstance(position);

}

5.	 For this example, create a simple fragment that just displays a line of text:

public class SimpleTextFragment extends Fragment {

	 private int mPosition;

	 public static SimpleTextFragment newInstance(int position) {

		 SimpleTextFragment frag = new SimpleTextFragment();

		 frag.mPosition = position;

		 return frag;

	 }

	 @Override

	 public View onCreateView(LayoutInflater inflater, ViewGroup
	 p container, Bundle savedInstanceState) {

		 TextView tv = new TextView(getActivity());

		 tv.setText(“Page “ + mPosition);

		 return tv;

	 }

}

Tip:  Google has begun to use the paging-style interface
throughout the built-in Android applications. You should consider

adding support for this interface paradigm in your own application to
achieve consistency with the platform.

180  Chapter 6  Navigation and Data Loading

Loading Data into Views

In Chapter 2, you learned about list views and how you bind data to the list. The
ListView class is actually an implementation of the more general AdapterView.
Adapter views are used to display data that is not known until runtime; these
take the form of lists, spinners, grids, or anything else where a series of similar
elements is displayed. To bind the data to the display, you use the Adapter class.
The adapter takes data from a data source, inflates and configures the item views,
and then loads the data into the adapter view. The data source is typically an array
or a database cursor. You will use adapters and adapter views throughout your
Android applications.

Basic Data Binding

The easiest way to bind data to a view is to use one of the premade adapter
classes. SimpleAdapter is available for mapping static data defined in an array.
SimpleCursorAdapter allows you to easily bind data from a database query. Both
of these adapters require a few parameters that map the underlying data to the
item view layout. Here is a simple example:

SimpleCursorAdapter adapter = new SimpleCursorAdapter(this,

	 android.R.layout.simple_list_item1,

	 cursor,

	 new String[] {TITLE},

	 new int[] {android.R.id.text1});

setListAdapter(adapter);

Here, a SimpleCursorAdapter is created that binds data to the built-in
simple_list_item1 layout. This layout displays a single row of text and is used
to display a single row in a ListView. The two arrays provided map the columns
of the database cursor to the IDs of views in the layout. Note that you’re not
constrained to using one of the Android system layouts; you can supply your own
layouts, as long as the column and ID arrays match the cursor data and layout.
Once the adapter has been created, it’s bound to the AdapterVIew (a ListView,
in this example) that will display the data to the user.

Loading Data into Views  181

The Adapter Class

Simple adapters work well when you have just a few views, but more complex data
requires a custom adapter. To create a custom adapter, you override the Adapter
class (or one of its subclasses) and implement the getView method. This method
is called for each element of data and should return the fully inflated view for the
data. Android is intelligent about loading the data, and it only loads as much as is
needed to display onscreen. In addition, the view containers are recycled as the
data is swapped. That way, the view will only consume the memory required to
display what the user sees onscreen.

You saw an example adapter in Chapter 2 when you implemented a list view.
In that example, you created an adapter that extended ArrayAdapter to display in
a list. The TimeTracker app will use a database for storing tasks, so you’ll need to
implement a new adapter that extends CursorAdapter. This is also a good time to
learn about an important optimization that you can use in your adapters.

The ViewHolder pattern
Creating smoothly scrolling lists requires that you optimize the time spent in the
getView method. If you do too many allocations, it can cause stutters when the
garbage collector runs and collects memory. Additionally, expensive operations
like view inflation will slow down the drawing of your list. The ViewHolder pattern
provides a way to optimize your adapters.

Note:  Some subclasses of Adapter already implement the getView method
for you. For example, CursorAdapter implements getView and requires
that you instead implement newView and bindView. Be sure to read the

documentation on your superclass adapter before creating your own.

182  Chapter 6  Navigation and Data Loading

Here is the new adapter for the TimeTracker app, using the ViewHolder pattern:

public class TimeListAdapter extends CursorAdapter {

	 private static class ViewHolder {

	 	 int nameIndex;

	 	 int timeIndex;

	 	 TextView name;

	 	 TextView time;

	 }

	 public TimeListAdapter(Context context, Cursor c, int flags) {

		 super(context, c, flags);

	 }

	 @Override

	 public void bindView(View view, Context context, Cursor cursor) {

	 	 ViewHolder holder = (ViewHolder) view.getTag();

	 	 holder.name.setText(cursor.getString(holder.nameIndex));

	 	 holder.time.setText(cursor.getString(holder.timeIndex));

	 }

	 @Override

	 public View newView(Context context, Cursor cursor, ViewGroup
	 p parent) {

	 	 View view = LayoutInflater.from(context).inflate	
	 	 p (R.layout.time_row, null);

	 	 ViewHolder holder = new ViewHolder();

	 	 holder.name = (TextView) view.findViewById(R.id.task_name);

	 	 holder.time = (TextView) view.findViewById(R.id.task_time);

Loading Data into Views  183

	 	 holder.nameIndex = cursor.getColumnIndexOrThrow	
	 	 p (TaskProvider.Task.NAME);

	 	 holder.timeIndex = cursor.getColumnIndexOrThrow	
	 	 p (TaskProvider.Task.DATE);

	 	 view.setTag(holder);

		 return view;

	 }

}

This adapter extends CursorAdapter, so it needs to override the newView and
bindView methods. The important thing to note is that the inflate and findViewById
calls occur only when newView is called. After that, you simply retrieve the existing
sub-views from the row view itself. This works because the rows of the list are recycled
as you scroll. Once the system has enough rows inflated, it will stop calling newView
to inflate a new row, and instead start reusing the existing views. Helpfully, the View
class contains a setTag method that allows you to store an arbitrary object within
the view. This is a simple pattern you can use in your adapters to greatly improve
performance with little effort.

Now that you’ve seen how to efficiently bind data to your views, you just have
to get the data. But long-running operations, like database queries, can’t be per-
formed on the main thread. So how do you get the data to bind in the first place?
That’s where loaders come in.

Loaders

Before version 3.0, Android required a complex set of method calls to query the
database asynchronously and retrieve a cursor. Android 3.0 introduced loaders to
make loading, watching, and re-querying data a much simpler task. Loaders auto-
mate the grunt work of querying your database and returning usable data to your
app. They also monitor their data source for changes and will call into your app
when something changes. You should absolutely be using loaders in your applica-
tion, because they will greatly simplify your data binding code, and thanks to the
compatibility library, you can use loaders with Android versions earlier than 3.0.

184  Chapter 6  Navigation and Data Loading

The basic use of a loader requires three steps:

1.	 Get a reference to a LoaderManager by calling getLoaderManager(). If run-
ning on a version earlier than Android 3.0, your activity will have to extend
FragmentActivity from the compatibility library.

2.	 Initialize the loader by calling initLoader. The initLoader method takes
three arguments: a unique integer ID for the loader, an optional bundle of
arguments, and a LoaderManager.LoaderCallbacks implementation. In the
TimeTracker app, the activity itself implements the callbacks:

getLoaderManager().initLoader(0, null, this);

The loader ID is used only within the context of your app. It is needed to
distinguish between loaders when using the same LoaderManager callbacks
for more than one loader.

3.	 Implement the LoaderCallbacks, providing data for the loader and actions
to take when the data changes.

public Loader<Cursor> onCreateLoader(int id, Bundle args) {

	 Uri uri = CONTENT_URI;

	 return new CursorLoader(getActivity(), uri, null, null,
	 p null, null);

}

public void onLoadFinished(Loader<Cursor> loader, Cursor data) {

	 mAdapter.swapCursor(data);

}

public void onLoadReset(Loader<Cursor> loader) {

	 mAdapter.swapCursor(null);

}

The CursorLoader in this example will query a database using a static URI and
query parameters (null in this case results in the default data being returned).
When onLoadFinished is called, it swaps the new cursor into the adapter that will
then trigger the view to be updated. In the case that the data is reset, the adapter
is configured with null data, clearing the display.

Loading Data into Views  185

Wrapping Up

This chapter introduced Android’s new action bar view, a simplified bar that provides
quick actions for Android applications. You learned about the options for adding
navigation to your app, including the ViewPager, which is used extensively through-
out the Android 4 release. The TimeTracker app has really come together now that
you’re loading data from a database into the UI. In this chapter, you learned that

JJ The action bar replaces Android’s menu button and provides a unified look
across applications.

JJ You can use an action view to provide a search interface that is integrated
into the action bar.

JJ The action bar provides a simple tabbed browsing interface you can easily
add to your app.

JJ The ViewPager class, available in the compatibility library, creates a paging-
style interface.

JJ You can use loaders to asynchronously query and load data into your UI.

186  Chapter 6  Navigation and Data Loading

This page intentionally left blank

7

Android Widgets

189

The Android home screen is more than just a collec-

tion of application launchers. It’s a user-configurable

dashboard that contains a mix of quick-launch shortcuts and

easily accessible information. Android apps can create mini

applications called widgets, which contain a subset of the full

functionality of an app. This chapter covers the basics of widgets.

Along the way, you’ll learn that widgets can be embedded in any

application, though they are typically embedded in the home

screen; that RemoteViews allow apps to create a full layout hier-

archy and send it to other processes that can inflate and display

it; and that widgets can display dynamic collections of data from

sources such as databases.

An Android widget is a small window into the functionality of a full application.
They can be used to display status information, such as the current weather or
the number of unread messages, and they can provide quick access to commonly
used controls like the Play/Pause button on a music player. Widgets are embedded
in other applications, though they are typically only embedded in the Launcher
application. The Launcher app is the starting screen, or home screen, for an Android
device. Figure 7.1 shows an example home screen with a few widgets.

Figure 7.1  Widgets that are
included with Android

Tip:  Google provides an app widget template pack to assist
you in creating visually stunning widgets. It includes pre-built

9-patch graphics, XML layouts, and Adobe Photoshop templates. You can
download the template pack at http://developer.android.com/guide/
practices/ui_guidelines/widget_design.html.

Creating a Basic Widget

190  Chapter 7  Android Widgets

http://developer.android.com/guide/practices/ui_guidelines/widget_design.html
http://developer.android.com/guide/practices/ui_guidelines/widget_design.html

Declaring the Widget

The TimeTracker app needs a quick way for users to start and stop the timer. A widget
is perfect for providing this control. Like activities and services, widgets must be
declared in your application manifest.

Add the following to the TimeTracker manifest:

<receiver android:name=”.TimerWidgetProvider” >

	 <intent-filter>

		 <action android:name=”android.appwidget.action.
		 p APPWIDGET_UPDATE” />

	 </intent-filter>

	 <meta-data

		 android:name=”android.appwidget.provider”

		 android:resource=”@xml/time_tracker_appwidget_info” />

</receiver>

This code declares an AppWidgetProvider class (more on that in a bit) and gives
it a name. In this case, it’s TimerWidgetProvider. Notice that the XML element is
a <receiver>. This declares it as a BroadcastReceiver, similar to the one you used
for communicating between the TimerService and the TimeTrackerActivity.
The AppWidgetProvider class is really just a BroadcastReceiver. You’ll learn more
about the AppWidgetProvider class in a little bit, but just know that you have to
specify the <intent-filter> and that it should filter on the android.appwidget.
action.APPWIDGET_UPDATE broadcast. You also need to declare the <meta-data>
element that specifies the AppWidgetProviderInfo XML file.

The AppWidgetProviderInfo XML

Every widget that your app provides must have a corresponding AppWidgetProviderInfo
XML file. This file contains all the metadata that the system needs to create and
maintain your widget: size, update interval, preview image, layout, and so on. This
file should be placed in the res/xml directory in your project.

1.	 Open the TimeTracker app, and create a folder named xml in the res/ directory.

2.	 In this folder, create a file named timer_appwidget_info.xml.

Creating a Basic Widget  191

3.	 Enter the following code in the file:

<appwidget-provider xmlns:android=”http://schemas.android.com/
p apk/res/android”

	 android:minWidth=”110dp”

	 android:minHeight=”40dp”

	 android:updatePeriodMillis=”86400000”

	 android:previewImage=”@drawable/icon”

	 android:initialLayout=”@layout/timer_widget”

	 android:resizeMode=”horizontal|vertical”>

</appwidget-provider>

This should be self-explanatory. The <appwidget-provider> element
defines a series of metadata for the widget. Every widget you create should
have a different provider info file. Table 7.1 summarizes the available options.

You will also need to create the layout used by the widget. For the TimeTracker,
the widget will show a simple box with the time and a Start/Stop button
(Figure 7.2).

Figure 7.2  The timer
widget you will build for
the TimeTracker app

192  Chapter 7  Android Widgets

Table 7.1  AppWidgetProviderInfo Options

Option Description

minHeight, minWidth The default width and height that your widget will be given
when created. Note that the widget may be given more space
than requested. This should be in units of dp. Use the formula
(70 x n) – 30, where n is the number of cells your widget needs.
(See the sidebar “How to Calculate Widget Size” for more info.)

minResizeHeight,
minResizeWidth

The absolute minimum height and width that your widget can
be resized to. If greater than minWidth and minHeight, this is
ignored.

label The label the user will see when selecting a widget.

icon The icon the user will see when selecting a widget.

updatePeriodMillis The interval, in milliseconds, at which the widget should be
updated. If this is not specified, the AppWidgetManager will
update your widget once every 30 minutes by default.

previewImage The image that is displayed to the user when selecting a
widget. This is used only on Android 3.0 and above.

initialLayout The XML layout file used by your widget. Note that the final
widget layout may change if the user resizes it.

resizeMode Set this to allow users to resize your widget. Valid values are
NONE, VERTICAL, HORIZONTAL, or BOTH. The default is NONE.

configure Optional attribute that declares the app widget configuration
activity.

autoAdvanceViewId Used with a collection widget, this specifies the view ID that
should be auto-advanced by the widget’s host.

Creating a Basic Widget  193

4.	 Create a shape drawable named widget_background.xml for the widget
background, and place it in the res/drawable folder. This will simply be a
box with rounded corners and a little transparency:

<?xml version=”1.0” encoding=”utf-8”?>

<shape xmlns:android=”http://schemas.android.com/
p apk/res/android”

	 android:shape=”rectangle” >

	 <solid android:color=”#80000000” />

	 <corners android:radius=”4dp” />

</shape>

5.	 Create a new layout file named timer_widget.xml, and place it in the
res/layout folder. Use the built-in play image for the Start/Stop button:

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/
p apk/res/android”

	 android:layout_width=”match_parent”

	 android:layout_height=”match_parent”

	 android:orientation=”horizontal”

	 android:background=”@drawable/widget_background” >

	 <TextView

		 android:id=”@+id/counter”

		 android:layout_width=”0dp”

Tip:  You can create transparent colors on Android by
adding two significant digits to the color code. In this case,

the transparency value is 80. A value of 00 is fully transparent,
and a value of FF is fully opaque.

194  Chapter 7  Android Widgets

		 android:layout_height=”match_parent”

		 android:layout_weight=”1”

		 android:gravity=”center”

		 android:text=”00:00”

		 android:singleLine=”true”

		 android:textAppearance=
		 p ”?android:attr/textAppearanceLarge” />

	 <ImageView

		 android:id=”@+id/start_stop”

		 android:layout_width=”0dp”

		 android:layout_height=”match_parent”

		 android:layout_weight=”1”

		 android:scaleType=”center”

		 android:src=”@android:drawable/ic_media_play” />

</LinearLayout>

You have now completed all the layout work for the widget.

Tip:  The Android emulator contains an application called Widget
Preview, which can be used to capture an image preview for your
widget. Just install your app on the emulator, run Widget Preview, configure
your widget, and save the image. The image will be available in the emula-
tor’s sdcard/Download/ folder.

Creating a Basic Widget  195

How to Calculate Widget Size

The Android home screen is divided into cells arranged in a grid. Generally,
phones have home screens with a 4 by 4 grid, and tablets have home screens
with an 8 by 7 grid, but device manufacturers may create home screens with
grids of any size.

Here are some tips to ensure that your widgets function properly:

JJ Widgets will expand to the grid size that contains them. So if the cell size
is 10dp by 10dp and your widget requests a size of 15dp by 15dp, it will
consume 4 cells on the grid (2 high and 2 wide).

JJ The minimum size of a widget is 1 cell.

JJ To calculate the size of your widget, use the formula (70 x n) – 30, where
n is the desired number of cells. So, if you want your widget to be 4 cells
wide, set the minWidth attribute to (70 x 4) – 30 = (280) – 30 = 250dp.

JJ Widgets should not extend to the edges of their containers; they should
have padding such that there is space around the visible part of the
widget. Android 4.0 adds padding to the widget layout for you, but you
should add some padding for previous versions of Android. Unlike normal
layouts, you cannot use resource qualifiers for widget layouts. To create
padding for a widget layout only on pre-4.0 devices, use dimens or differ-
ent drawable resources.

JJ For maximum compatibility, never make a widget that requires more
than 4 by 4 cells.

196  Chapter 7  Android Widgets

The AppWidgetProvider Class

The AppWidgetProvider class is the primary interface to your widgets. It is respon-
sible for defining the layout of the widget and providing all updates to it. It pro-
vides callbacks that are triggered at different points in the life cycle of a widget.
By implementing these callbacks, you can control the behavior of your widgets.
Table 7.2 shows the callback methods and when they are called.

Table 7.2  AppWidgetProvider Methods

Method Description

onUpdate Called when the AppWidgetManager updates the widget. Also
called the first time a widget is added, but only if you do not
have a configuration activity set. This is the most important
method to implement.

onDeleted Called every time a widget is deleted from the host.

onEnabled Called the first time a widget is created, but not for subsequent
widget creations. Use this to perform a one-time initialization,
such as instantiating database cursors that all app widgets
can share.

onDisabled Called when the last instance of a widget is deleted. Use this to
clean up any operations performed in onEnabled.

onReceive The standard BroadcastReceiver onReceive callback. This is
called every time a broadcast that is relevant to an app widget
is received. You normally don’t need to implement this.

1.	 For the TimeTracker app, create a new class named TimerWidgetProvider
that extends AppWidgetProvider:

public class TimerWidgetProvider extends AppWidgetProvider {

	 @Override

	 public void onUpdate(Context context, AppWidgetManager
	 p appWidgetManager, int[] appWidgetIds) {

	 }

}

Creating a Basic Widget  197

The most important method to override is onUpdate. This is called every
time a new widget is added to the home screen. It’s also called when the
system updates your widget, based on the updatePeriodMillis attribute
you specified. You’ll learn about how to implement this method shortly.

AppWidgetProvider is actually a subclass of BroadcastReceiver. Specifically,
it receives the APPWIDGET_UPDATE broadcasts and generates the widget life
cycle callbacks. This is just a convenience for you. You could create your
own BroadcastReceiver and handle those updates yourself. In fact, you can
override the onReceive method of AppWidgetProvider to handle broadcasts
other than just the app widget broadcasts. The TimeTracker app can take
advantage of this to update the widget whenever a timing event is broadcast.

2.	 Open TimeTrackerActivity and add some new static strings:

public class TimeTrackerActivity extends FragmentActivity
p implements OnClickListener, ServiceConnection,
p ViewPager.OnPageChangeListener, TaskListener {

	 public static final String ACTION_TIME_UPDATE =
	 p “com.example.ActionTimeUpdate”;

	 public static final String ACTION_TIMER_FINISHED = 	
	 p “com.example.ActionTimerFinished”;

	 public static final String ACTION_TIMER_STOPPED = 	
	 p “com.example.ActionTimerStopped”;

	 ...

3.	 Add a new TIMER_STOPPED broadcast to the TimerService that is broadcast
when the timer is stopped:

public void stopTimer() {

	 mHandler.removeMessages(0);

	 stopSelf();

	 mNM.cancel(TIMER_NOTIFICATION);

	 updateTask();

	 // Broadcast timer stopped

198  Chapter 7  Android Widgets

	 Intent intent = new Intent(TimeTrackerActivity.	
	 p ACTION_TIMER_STOPPED);

	 intent.putExtra(“time”, mTime);

	 sendBroadcast(intent);

	 }

4.	 Also in TimerService, update the onStartCommand method to stop the timer
if it is already running:

@Override

public int onStartCommand(Intent intent, int flags,
p int startId) {

	 if (isTimerRunning()) {

	 	 stopTimer();

	 	 return START_STICKY;

	 }

	 ...

5.	 Add the three timer-related broadcasts to the <intent-filter> of the
TimerWidgetProvider:

<receiver android:name=”.TimerWidgetProvider” >

	 <intent-filter>

		 <action android:name=”android.appwidget.action.
		 p APPWIDGET_UPDATE” />

	 	 <action android:name=”com.example.ActionTimeUpdate” />

	 	 <action android:name=”com.example.ActionTimerFinished” />

	 	 <action android:name=”com.example.ActionTimerStopped” />

	 </intent-filter>

	 <meta-data

		 android:name=”android.appwidget.provider”

		 android:resource=”@xml/time_tracker_appwidget_info” />

		 </receiver>

Creating a Basic Widget  199

6.	 Implement the onReceive method. You will create the missing
updateWidgetTime method in the next section. Don’t forget to call the
superclass onReceive at the end, or the widget updates will not be received:

@Override

	 public void onReceive(Context context, Intent intent) {

		 String action = intent.getAction();

		 if (TimeTrackerActivity.ACTION_TIME_UPDATE.
		 p equals(action)) {

			 Bundle extras = intent.getExtras();

			 long time = extras.getLong(“time”);

			 updateWidgetTime(context, time, true);

			 return;

		 } else if (TimeTrackerActivity.ACTION_TIMER_FINISHED.
		 p equals(action) ||

				 TimeTrackerActivity.ACTION_TIMER_STOPPED.
				 p equals(action)) {

			 Bundle extras = intent.getExtras();

			 long time = extras.getLong(“time”);

			 updateWidgetTime(context, time, false);

			 return;

		 }

		 super.onReceive(context, intent);

	 }

200  Chapter 7  Android Widgets

Remote Views

All Android applications run in a sandbox that prevents them from interfering with
other apps or with the system. However, widgets run as part of another application
(the Launcher, in this case). How does Android handle this case? By using a new
class called RemoteViews.

The RemoteViews class is not actually a view. It’s a Parcelable object that con-
tains all the information necessary to inflate the view hierarchy of the widget. It
can then be sent to other applications via an intent. Those applications can inflate
this new view hierarchy in their own processes. This is all done with no interaction
among the apps other than the basic data types allowed by the Parcelable inter-
face. This maintains the separation between application processes while allowing
one application to create a view hierarchy in another application. You can think of
this as similar to how HTML is transferred across the Internet and then displayed
(inflated) on your computer.

The RemoteViews object doesn’t actually contain a view hierarchy, but rather
contains the necessary information to create one. Since the views don’t exist, the
RemoteViews object doesn’t allow direct manipulation of the view attributes. Instead,
you set view attributes using methods of the RemoteViews object itself, supplying
the ID of the view to be updated.

Add the rest of the TimerWidgetProvider implementation.

1.	 Implement the onUpdate method. Set a PendingIntent to be sent when the
Start/Stop button is pressed:

@Override

	 public void onUpdate(Context context, AppWidgetManager
	 p appWidgetManager, int[] appWidgetIds) {

	 	 Intent intent = new Intent(context, 	
	 	 p TimerService.class);

Note:  Parcelable is similar to the standard Java Serializable interface.
However, Parcelable requires that you implement the serialization
of classes yourself. This makes it faster and more efficient than using
the standard Serializable interface.

Creating a Basic Widget  201

	 	 PendingIntent pi = PendingIntent.getService	
	 	 p (context, 0, intent, 0);

	 	 RemoteViews views = new RemoteViews	
	 	 p (context.getPackageName(), R.layout.timer_widget);

	 	 views.setOnClickPendingIntent(R.id.start_stop, pi);

	 	 appWidgetManager.updateAppWidget(appWidgetIds, views);

	 }

This method simply creates a new PendingIntent that will send an Intent to
the TimerService. This triggers the starting and stopping of the timer. Note
that the setOnClickPendingIntent takes the view ID as the first parameter.
Remember that a remote process inflates the views in a RemoteViews object,
so you cannot set the fields directly. Finally, you update the widgets by call-
ing updateAppWidget on the AppWidgetManager.

2.	 Implement the updateWidgetTime method. This method simply updates the
displayed time and chooses the appropriate image for the button, based on
whether the timer is running:

private void updateWidgetTime(Context context, long time,
p boolean isRunning) {

		 AppWidgetManager manager = AppWidgetManager.
		 p getInstance(context);

		 int[] ids = manager.getAppWidgetIds(new
		 p ComponentName(context, TimerWidgetProvider.class));

		 RemoteViews views = new RemoteViews
		 p (context.getPackageName(), R.layout.timer_widget);

		 views.setTextViewText(R.id.counter,
		 p DateUtils.formatElapsedTime(time/1000));

		 views.setImageViewResource(R.id.start_stop,

				 isRunning ? android.R.drawable.ic_media_pause
				 p : android.R.drawable.ic_media_play);

		 manager.updateAppWidget(ids, views);

	 }

202  Chapter 7  Android Widgets

The images used here are the platform-default images for a Play button
and a Pause button.

Now you should have a working widget for the TimeTracker app. You can use
this to start and stop the timer.

App Widget Configuration Activity

You can optionally create an activity to configure your widgets. When the user adds
a widget to the home screen, the activity will launch. The contents of the activity
are up to you; there are no special classes to extend or interfaces to implement. In
the activity, it is your responsibility to update the widget based on the user’s input.

Here are the steps you need to take to create a widget configuration activity:

1.	 Add the configuration activity to the widget’s provider info XML file:

<appwidget-provider xmlns:android=http://schemas.android.com/
p apk/res/android

	 ...

	 android:configure=”com.example.android.	
	 p ExampleAppWidgetConfigure” >

</appwidget-provider>

2.	 Create an activity with an <intent-filter> for the APPWIDGET_CONFIGURE
broadcast:

<activity android:name=”.ExampleWidgetConfigurationActivity”>

	 <intent-filter>

	 	 <action android:name=”android.appwidget.action.	
	 	 p APPWIDGET_CONFIGURE”/>

	 </intent-filter>

</activity>

Note:  Because RemoteViews must be parceled before they are used,
they do not support the full set of views on the Android plat-
form. Check the Android documentation on widgets for the full list
of supported classes.

Creating a Basic Widget  203

3.	 Implement the activity that will configure the widget. In the activity onCreate
method, the widget ID is available as an extra in the intent used to start the
activity:

Intent intent = getIntent();

Bundle extras = intent.getExtras();

if (extras != null) {

	 widgetId = extras.getInt(AppWidgetManager.	
	 p EXTRA_APPWIDGET_ID, -1);

}

4.	 Set the widget configuration as you normally would—by calling
AppWidgetManager.updateAppWidget(). You must return a result code from
the activity to inform the host of the success or failure of the configuration:

Intent resultValue = new Intent();

resultValue.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID,
p mAppWidgetId);

setResult(RESULT_OK, resultValue);

finish();

5.	 Set the result to RESULT_CANCELED in onCreate, before anything else hap-
pens, to cancel the creation of the widget if the user backs out of the activity.

@Override

public void onCreate(Bundle bundle) {

	 super.onCreate(bundle);

	 Intent resultValue = new Intent();

	 resultValue.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, 	
	 p mAppWidgetId);

	 setResult(RESULT_CANCELED, resultValue);

	 ...

204  Chapter 7  Android Widgets

Remember that when you use a widget configuration activity, the onUpdate
method of the AppWidgetProvider class is not called when the app is added. It is the
responsibility of your activity to perform initial setup of the new widget instance.

Note:  You must return the EXTRA_APPWIDGET_INFO extra when your
widget configuration activity finishes. If you fail to do so, your widget
may not initialize properly. For this reason, always set the extra in your
activity onCreate method.

Creating a Basic Widget  205

Creating a Collection Widget

Android 3.0 introduced a new type of widget that can display a collection of data
provided by a remote data source such as a ContentProvider. The widget itself
displays this data in a list, grid, stack, or picture frame. Creating one of these widgets
is exactly like creating a standard widget but requires a new RemoteViewsService
and RemoteViewsFactory to supply the collection data.

Creating the Layout

The layout for a collection widget should contain a collection view, as well as a
TextView that displays when the collection is empty. The collection view can be
one of the following:

JJ ListView. A vertically scrolling list of items.

JJ GridView. A vertically scrolling grid of items.

JJ StackView. A stack of cards the user can flip through.

JJ AdapterViewFlipper. A picture frame-style widget. Only a single view is
visible at a time, and views are auto-advanced.

Figure 7.3 shows the four types of collection widgets.

Figure 7.3  The view types
available to display in a
collection widget. From
left to right: a ListView,
a GridView, a StackView,
and an AdapterViewFlipper.

206  Chapter 7  Android Widgets

Here is an example layout that uses a ListView:

<?xml version=”1.0” encoding=”utf-8”?>

<FrameLayout xmlns:android=”http://schemas.android.com/
p apk/res/android”

	 android:layout_width=”match_parent”

	 android:layout_height=”match_parent”

	 android:background=”#80000000”>

	 <ListView

		 android:id=”@+id/list_view”

		 android:layout_width=”match_parent”

		 android:layout_height=”match_parent”/>

	 <TextView

		 android:id=”@+id/empty_view”

		 android:layout_width=”match_parent”

		 android:layout_height=”match_parent”

		 android:gravity=”center”

		 android:text=”Empty List” />

</FrameLayout>

The ListView and the TextView are contained inside a FrameLayout so that
the TextView can be displayed when there is no data. Each item displayed by the
widget will need a layout as well. Since this example uses a ListView, you can just
use the standard android.R.layout.simple_list_item_1 layout.

Tip:  The empty view must be a sibling of the collection view
in your widget layout.

Creating a Collection Widget  207

Creating the Service

To provide data to the widget, you create a service that the widget’s hosting application
can query. This service should extend the RemoteViewsService class and implement
the onGetViewFactory method, which returns an instance of a RemoteViewsService
.RemoteViewsFactory to act as the interface between the service and the widget. In

fact, the service only exists to create the factory that the host application uses to
display the widget.

The RemoteViewsFactory provides the data for the collection widget. The inter-
face mirrors that of the Adapter class and uses the same semantics. Here is a sample
implementation of both the RemoteViewsService and the RemoteViewsFactory:

public class ExampleWidgetService extends RemoteViewsService {

	 public class ExampleRemoteViewsFactory implements
	 p RemoteViewsService.RemoteViewsFactory {

		 Context mContext;

		 public ExampleRemoteViewsFactory(Context context) {

			 mContext = context;

		 }

		 @Override

		 public int getCount() {

			 return 10;

		 }

		 @Override

		 public RemoteViews getViewAt(int position) {

			 RemoteViews views = new RemoteViews(mContext.
			 p getPackageName(), android.R.layout.
			 p simple_list_item_1);

			 views.setTextViewText(R.id.text1, “Item: “ + position);

			 return views;

		 }

208  Chapter 7  Android Widgets

	 // Other methods omitted for brevity

	 }

	 @Override

	 public RemoteViewsFactory onGetViewFactory(Intent intent) {

		 return new ExampleRemoteViewsFactory
		 p (this.getApplicationContext());

	 }

}

The factory is used by the host activity to retrieve the data to display. The
getViewAt method is where the RemoteViews object is returned. Here, the standard
list item layout is used when populating the ListView; note that this example
returns ten results. Finally, the widget must be set up to use the service in the
AppWidgetProvider:

public class ExampleWidgetProvider extends AppWidgetProvider {

	 @Override

	 public void onUpdate(Context context, AppWidgetManager
	 p appWidgetManager, int[] appWidgetIds) {

	 	 Intent intent = new Intent(context, 	
	 	 p ExampleWidgetService.class);

	 	 RemoteViews views = new RemoteViews	
	 	 p (context.getPackageName(), R.layout.widget_layout);

	 	 views.setRemoteAdapter(R.id.list_view, intent);

	 	 views.setEmptyView(R.id.list_view, R.id.empty_view);

		 appWidgetManager.updateAppWidget(appWidgetIds, views);

		 super.onUpdate(context, appWidgetManager, appWidgetIds);

	 }

}

Creating a Collection Widget  209

When the onUpdate method of the AppWidgetProvider is called, it should
return the view for the entire widget. When using a collection widget, you call
the setRemoteAdapter method to set the ID of the collection view and pass it an
Intent for the service that will populate the collection. You can optionally set a
view ID to display when the collection is empty by using the setEmptyView method.

You should now be able to run the example and create a widget similar to the
one shown in Figure 7.4.

Figure 7.4  The ListView
widget

Note:  Unlike most callbacks on Android, the onDataSetChanged and
getViewAt methods of RemoteViewsFactory do not run on the UI thread.

You are free to perform synchronous, long-running operations in those
methods. Also, if the getViewAt method takes a long time, the loading

view returned by getLoadingView will be shown until it finishes.

210  Chapter 7  Android Widgets

Wrapping Up

Android widgets provide a convenient method by which apps can present data to
the user without the need to load the full application. This is a powerful addition
to your application’s feature set. Using widgets, users can quickly find the informa-
tion they need without needless device interaction. This chapter covered the basics
of creating widgets on Android. Along the way, you learned that

JJ An AppWidgetProvider is really just a BroadcastReceiver that handles the
widget update broadcasts for you.

JJ The RemoteViews class allows widgets to be created and updated by other
processes in Android.

JJ The AppWidgetProviderInfo XML file is used to configure the widget and
its behavior.

JJ Collection widgets display data from a service using an adapter-like class
named RemoteViewsFactory.

Wrapping Up  211

This page intentionally left blank

Part 3

Advanced
UI Development

8

Handling
Gestures

215

The basic Android UI toolkit provides the most com-

mon interaction gestures you will need in your appli-

cation: taps, long presses, and swipes. But sometimes the

built-in gestures aren’t sufficient for your application or are not

available on the view you’re using. For those cases, Android pro-

vides the ability to create custom gestures. This chapter introduces

the basics of detecting and responding to gestures. Along the way,

you’ll learn that all views have an onTouchEvent method you can

use to intercept touch events; that the MotionEvent class is the

low-level interface to the touchscreen inputs; that you should use

GestureDetector and its subclasses to enable the most common

gestures; and that you can enable pinch-to-zoom functionality by

using the ScaleGestureDetector.

The most basic form of gesture recognition is the touch event. Touch events are
the lowest level of user interaction with the touchscreen. Events include putting
a finger on the screen, sliding a finger along the screen, and lifting a finger off
the screen. Each of these represents a discrete touch event. There are two ways
you can listen for these events: by registering an OnTouchListener on a view and
implementing the onTouchEvent method, or by implementing your own view and
overriding its onTouchEvent method. These methods are called with a MotionEvent
object containing information about the event.

Here is a simple example class that overrides View and implements the
onTouchEvent method:

1.	 Create a class named TouchExample that extends View:

public class TouchExample extends View {

	 public TouchExample(Context context) {

		 super(context);

	 }

}

2.	 Add some fields for position coordinates and some pre-computed color and
font size values. Create a new Paint object to store the text color and size:

public class TouchExample extends View {

	 private Paint mPaint;

	 private float mFontSize;

	 private float dx;

	 private float dy;

	 public TouchExample(Context context) {

	 	 super(context);

	 	 mFontSize = 16 * getResources().getDisplayMetrics().	
	 	 p density;

	 	 mPaint = new Paint();

Listening to Touch Events

216  Chapter 8  Handling Gestures

	 	 mPaint.setColor(Color.WHITE);

	 	 mPaint.setTextSize(mFontSize);

	 }

}

3.	 Override the onDraw method, and use the dx and dy values to set the posi-
tion of the text:

@Override

protected void onDraw(Canvas canvas) {

	 super.onDraw(canvas);

	 String text = “Hello World!”;

	 canvas.drawText(text, dx, dy, mPaint);

}

Here, the text is drawn onto the canvas at the specified position, using the
Paint object.

4.	 Now override the onTouchEvent method, set the x and y coordinates based
on the input MotionEvent object, and finish by invalidating the view:

@Override

public boolean onTouchEvent(MotionEvent event) {

	 dx = event.getX();

	 dy = event.getY();

	 invalidate();

	 return true;

}

Tip:  When overriding the onTouchEvent method, you should return
true to consume the event and prevent the base class from handling
it. Otherwise, you will receive only the ACTION_DOWN events and no others.

Listening to Touch Events  217

5.	 Finally, create an activity that uses your new view as its content:

public class GestureActivity extends Activity {

	 @Override

	 public void onCreate(Bundle savedInstanceState) {

		 super.onCreate(savedInstanceState);

		 TouchExample view = new TouchExample(this);

		 setContentView(view);

	 }

}

When you run this app, you should now see the text “Hello World!” follow your
finger around the screen (Figure 8.1). This simple example shows how you can
listen to, and take action based on, the user’s touch input. But the example only
handles a single finger. How would you handle a multi-touch screen?

Figure 8.1  The text will
follow your finger as you
drag it around the screen.

218  Chapter 8  Handling Gestures

Multi-Touch Events

The MotionEvent object actually contains information on multiple events. Each
finger the user puts on the screen is tracked and referred to as a pointer. By default,
the getX() and getY() methods return the default pointer. But all the other point-
ers are available, accessible via the getX(int) and getY(int) methods. The input
parameter is the index of the pointer. The primary pointer, the first one to touch
the screen, is index 0. The total number of pointers is available by calling the
getPointerCount() method. The index of a pointer can change, so each pointer
is also assigned an ID.

For example, if the user places a single finger on the screen, that finger is
assigned pointer index 0 and ID 0. Now when they place a second finger on the
screen, that new pointer is assigned index 1 and ID 1. If the user were to lift up
their first finger, the second pointer would become index 0 but would retain ID 1.
It’s the only pointer present; hence, it is the first pointer in the array of pointers.
However, the pointer ID is consistent across touches. So if the user were to place
their first finger on the screen again, that finger would again be assigned ID 0 and
would once again become index 0.

Note:  For efficiency, Android batches touch events into a single
call to onTouchEvent. In addition to containing multiple pointer
events, the MotionEvent object also contains a recent history for
each event. You can access these times by using the getHistoricalX
and getHistoricalY calls.

Listening to Touch Events  219

In addition to containing the pointers, the MotionEvent object also contains
an action parameter that describes what event has occurred. Table 8.1 summa-
rizes the list of events relevant to touchscreen interfaces. This is not an exhaus-
tive list. There are many more events for handling different interface types, such
as keyboards, mice, TVs, and game controllers. You should refer to the Android
documentation for a full list.

Table 8.1  MotionEvent Actions

Action Description

ACTION_DOWN The user has placed a finger on the screen in a single
place. This is the first touch event and is known as the
primary pointer. This pointer will have index 0.

ACTION_POINTER_DOWN The user has placed a non-primary finger on the screen.
The pointer index is greater than 0.

ACTION_POINTER_UP A single finger has been removed from the screen, but
not the finger corresponding to the primary pointer.

ACTION_MOVE The user is sliding a finger across the screen.

ACTION_UP The user has stopped touching the screen and has lifted
all fingers away from it.

ACTION_CANCEL Sent by the touchscreen framework when the current
set of touch events should be canceled. This occurs if
the hardware has generated a spurious touch or if a
parent view has stolen the touch event.

The earlier example always uses pointer index 0 to place and move the text. If
you place a finger on the screen, the text will follow it. Try altering the example
to show each touch pointer index and ID:

1.	 Add both a new class to hold the pointer data and an array to store the point-
ers. For this example, you only need to track five points. Initialize the array
with Pointer objects. You can remove the dx and dy fields:

final static int MAX_POINTERS = 5;

private Pointer[] mPointers = new Pointer[MAX_POINTERS];

class Pointer {

220  Chapter 8  Handling Gestures

	 float x = 0;

	 float y = 0;

	 int index = -1;

	 int id = -1;

}

public TouchExample(Context context) {

	 for (int i = 0; i<MAX_POINTERS; i++) {

	 	 mPointers[i] = new Pointer();

	 }

	 ...

2.	 Update the onTouchEvent method to track each finger that is placed on the
screen. Set the pointer data when the first touch occurs and while the user
swipes their finger across the screen:

@Override

public boolean onTouchEvent(MotionEvent event) {

	 int pointerCount = Math.min(event.getPointerCount(),
	 p MAX_POINTERS);

	 switch (event.getAction() & MotionEvent.ACTION_MASK) {

	 case MotionEvent.ACTION_DOWN:

	 case MotionEvent.ACTION_POINTER_DOWN:

	 case MotionEvent.ACTION_MOVE:

	 	 // Clear previous pointers

	 	 for (int id = 0; id<MAX_POINTERS id++)

	 	 	 mPointers[id].index = -1;

	 	 // Now fill in the current pointers

	 	 for (int i = 0; i<pointerCount i++) {

			 int id = event.getPointerId(i);

	 	 	 Pointer pointer = mPointers[id];

Listening to Touch Events  221

	 	 	 pointer.index = i;

	 	 	 pointer.id = id;

	 	 	 pointer.x = event.getX(i);

	 	 	 pointer.y = event.getY(i);

	 	 }

	 	 invalidate();

	 	 break;

	 case MotionEvent.ACTION_CANCEL:

		 for (int i = 0; i<pointerCount i++) {

	 	 	 int id = event.getPointerId(i);

			 mPointers[id].index = -1;

		 }

		 invalidate();

		 break;

	 }

	 return true;

}

3.	 Update the onDraw method to display the index and ID of each pointer:

@Override

protected void onDraw(Canvas canvas) {

	 super.onDraw(canvas);

	 for (Pointer p : mPointers) {

	 	 if (p.index != -1) {

	 	 	 String text = “Index: “ + p.index + “ ID: “ + p.id;

	 	 	 canvas.drawText(text, p.x, p.y, mPaint);

	 	 }

	 }

}

222  Chapter 8  Handling Gestures

Now as you press each finger on the screen, you will see text showing the index
and ID of each pointer (Figure 8.2). Experiment with touching multiple fingers at
once and then lifting them off the screen. Observe how the ID remains consistent,
but the index changes.

Figure 8.2  The index and
ID of each pointer will be
displayed as you place your
fingers on the screen.

Note:  You should always handle the ACTION_CANCEL event, because the
touch system may erroneously report touches and cancel them later.
This will also happen when a parent view steals the touch event. For
example, if your view is inside a ListView, then the list may steal the
touch event once it has detected that the user is actually scrolling the list.

Listening to Touch Events  223

Responding to Gestures

Touch events provide a very low-level interface to the touchscreen that can be
difficult to interpret. Often what you really need is the ability to recognize certain
gestures the user makes on the screen. For that, Android provides convenience
classes that detect gestures for you.

GestureDetector

To detect gestures, you create an instance of the GestureDetector class and send
it all touch events your view receives. You register an OnGestureListener with
the GestureDetector to receive callbacks when gestures are detected. This inter-
face has callbacks for the most common gestures you will need: taps, double taps,
swipes, and flings.

Modify the example to zoom the text when you double-tap the screen:

1.	 Add a scale field to the View. You will use this to scale the text size:

public class TouchExample extends View {

	 private float mScale = 1.0f;

	 ...

2.	 Create the gesture listener that will zoom the text. In this case, extend the
SimpleOnGestureListener, which provides stub implementations for the
callback methods. Override the onDoubleTap method to listen for double-
tap gestures:

public class ZoomGesture extends GestureDetector.
p SimpleOnGestureListener {

	 private boolean normal = true;

	 @Override

	 public boolean onDoubleTap(MotionEvent e) {

		 mScale = normal ? 3f : 1f;

		 mPaint.setTextSize(mScale*mFontSize);

		 normal = !normal;

224  Chapter 8  Handling Gestures

		 invalidate();

		 return true;

	 }

}

The listener simply alternates the scale factor based on the Boolean normal
value and updates the text size. When finished, it invalidates the view to
force it to redraw.

3.	 Add a GestureDetector field and instantiate it in the view constructor,
initializing it with the ZoomGesture listener you created:

private GestureDetector mGestureDetector;

public TouchExample(Context context) {

	 super(context);

	 mGestureDetector = new GestureDetector(context, 	
	 p new ZoomGesture());

	 ...

4.	 You must call the onTouchEvent method of the gesture detector in the
onTouchEvent method of the view:

@Override

public boolean onTouchEvent(MotionEvent event) {

	 mGestureDetector.onTouchEvent(event);

	 ...

Responding to Gestures  225

Now when you run the app, double-tapping the screen will zoom the text
(Figure 8.3). Double-tap again and the text will return to its original size. This
example shows how easy it is add simple gesture detection to your app. Adding a
similar double-tap gesture to the TimeTracker app will make starting and stopping
the timer a snap. Go ahead and register an onTouchListener on the timer text view
and add a double-tap gesture that acts exactly like a press of the Start/Stop button.

The GestureDetector makes working with gestures a snap, but it is missing
one important and very frequent gesture: pinch to zoom. For that reason, Android
2.2 added the ScaleGestureDetector.

ScaleGestureDetector

The ScaleGestureDetector class functions exactly like the standard GestureDetector,
but it provides gesture recognition for two-fingered motions. Callbacks are avail-
able for accessing the distance between two pointers, the scale change between
the current and previous pointers, and the focal point of two pointers. The most
common use for this is the pinch-to-zoom feature, where a user presses two fingers

Figure 8.3  Using a
GestureDetector, you can
now double-tap the display
to zoom the text.

226  Chapter 8  Handling Gestures

on the screen and expands them to zoom in to a view. Google Maps provides a good
example of this interaction pattern.

Implementing the pinch-to-zoom gesture requires that you implement the
OnScaleGestureListener, which is similar to the GestureListener. The pinch-to-zoom
implementation uses the onScale method to detect pinching and spreading motions,
and it uses those motions to alter the displayed views. Here is a simple example:

1.	 Create a new class called ScaleGesture that extends the SimpleOnScale
GestureListener:

public class ScaleGesture extends
p ScaleGestureDetector.SimpleOnScaleGestureListener {

	 @Override

	 public boolean onScale(ScaleGestureDetector detector) {

		 mScale *= detector.getScaleFactor();

		 mPaint.setTextSize(mScale*mFontSize);

		 invalidate();

		 return true;

	 }

}

2.	 To use this gesture in the example app, you need to add the ScaleGesture
Detector to the view onCreate method:

private GestureDetector mGestureDetector;

private ScaleGestureDetector mScaleGestureDetector;

public TouchExample(Context context) {

	 super(context);

	 mGestureDetector = new GestureDetector(context,
	 p new ZoomGesture());

	 mScaleGestureDetector = new ScaleGestureDetector(context, 	
	 p new ScaleGesture());

	 ...

Responding to Gestures  227

3.	 Remember to call the onTouchEvent method of the OnScaleGestureListener
in the onTouchEvent method of the view:

@Override

public boolean onTouchEvent(MotionEvent event) {

	 mGestureDetector.onTouchEvent(event);

	 mScaleGestureDetector.onTouchEvent(event);

	 ...

Now, in addition to being able to double-tap to zoom, you can pinch to zoom
as well. With ScaleGestureDetector and GestureDetector, you will be able to
handle all the common touchscreen interaction that users will expect.

Custom Gestures

You are not limited to the predefined gestures provided by the Android
framework—you are free to implement your own gesture detection. Follow
the example of the existing gesture detectors; the source code is available at
http://source.android.com/.

There is another option for implementing custom gestures that doesn’t require
custom detection code. The Android emulator contains an app called Gestures
Builder that lets you create gesture patterns by drawing on the screen with
your mouse. These patterns are saved in a file that you can bundle with your
app. By loading this gestures file at runtime, you can register to receive a call-
back when the user performs the gesture.

This custom gesture functionality is available through the android.gesture
package. While this library has limited use, it can be a convenient way to add
a completely custom gesture to your application.

228  Chapter 8  Handling Gestures

http://source.android.com/

Wrapping Up

This chapter introduced the basics of touch events and gesture handling. You
learned how to intercept touchscreen events, what actions correspond to those
events, and how to detect higher-order touch events like gestures. Along the way,
you learned that

JJ The View.onTouchEvent method is called when a user touches that view.

JJ Each touch point on a multi-touch screen is called a pointer.

JJ MotionEvent objects contain all touch pointers and their recent history.

JJ The GestureDetector class provides a simple way to add gesture support
to your app.

JJ You can use the ScaleGestureDetector class to detect pinch-to-zoom
gestures.

Wrapping Up  229

9

Animation

231

Animation helps users understand the functionality

of your app without the need for explicit instruction.

Android provides a few animation APIs with different use

cases. Drawable and view animations offer the best compat-

ibility, but they only operate on views. Starting with Android 3.0,

the property animation framework is the preferred method for

creating animations. This framework removes the limitations of

view animations and can animate any object, not just views.

In this chapter, you’ll learn that you can use drawable animations

to create sprite-style animation; that the view animation frame-

work provides compatibility for older versions of Android, but that

it can be used only on views; that the ObjectAnimator is used to

change the properties of an object over time; that interpolators

change the rate at which an animation is applied, creating a more

natural animation; and that the ViewPropertyAnimator lets you

animate views using a series of chainable method calls.

The simplest animations on Android display a series of drawables in sequence. This
is known as drawable animation. To create a drawable animation, you create an
XML file that lists the drawables that are part of the animation. Android will then
display these drawables in sequence, creating the animation. You define attributes
for the duration and for whether the animation should loop or just run a single time.

Here is a simple example that creates an animated ball:

1.	 Create three simple shape drawables. Use the android:shape attribute to
make the circles: one black, one gray, and one white. Here is the white circle:

<?xml version=”1.0” encoding=”utf-8”?>

<shape xmlns:android=”http://schemas.android.com/
p apk/res/android”

	 android:shape=”oval” >

	 <solid android:color=”#FFFFFF”/>

	 <size android:height=”100dp” android:width=”100dp” />

</shape>

2.	 Now create the drawable animation. This will be a one-shot animation,
meaning it will run once and then stop. Set the animation duration to 250
milliseconds:

<?xml version=”1.0” encoding=”utf-8”?>

<animation-list xmlns:android=”http://schemas.android.com/
p apk/res/android”

	 android:visible=”true” android:oneshot=”true”>

	 <item android:drawable=”@drawable/white_circle”
	 p android:duration=”250” />

	 <item android:drawable=”@drawable/gray_circle”
	 p android:duration=”250” />

	 <item android:drawable=”@drawable/black_circle”
	 p android:duration=”250” />

</animation-list>

The android:visible attribute specifies that the animated drawable will
be visible before the animation starts.

Creating Drawable
Animations

232  Chapter 9  Animation

3.	 Create a simple layout that contains just an ImageView with its source set
to the animation:

<?xml version=”1.0” encoding=”utf-8”?>

<ImageView xmlns:android=”http://schemas.android.com/
p apk/res/android”

	 android:id=”@+id/image_view”

	 android:layout_width=”match_parent”

	 android:layout_height=”match_parent”

	 android:scaleType=”center”

	 android:src=”@drawable/animation” />

4.	 Create the activity, and set its content view to the layout. Set a touch listener
on the image view to start the animation when the user taps it. Because
the animation is a one-shot, you need to call stop() before start() for
subsequent taps:

public class AnimationExampleActivity extends Activity {

	 @Override

	 public void onCreate(Bundle savedInstanceState) {

		 super.onCreate(savedInstanceState);

		 setContentView(R.layout.main);

		 ImageView iv = (ImageView)
		 p findViewById(R.id.image_view);

		 iv.setOnTouchListener(new OnTouchListener() {

			 @Override

			 public boolean onTouch(View v, MotionEvent event) {

				 ImageView iv = (ImageView) v;

				 AnimationDrawable ad = (AnimationDrawable)
				 p iv.getDrawable();

				 ad.stop();

				 ad.start();

Creating Drawable Animations  233

				 return true;

			 }

		 });

	 }

}

5.	 Run the app, and tap the screen to see the circle animating as the system
swaps between each drawable (Figure 9.1).

This simple method is very fast to set up and works well when you want a
sprite-type animation.

Figure 9.1  A drawable anima-
tion transitioning between
three drawables

234  Chapter 9  Animation

Creating View Animations

The primary method of creating animations prior to Android 3.0 was the view
animation system. View animation provides a series of built-in animation opera-
tions that generate in-between, or tween, views. You supply the starting and ending
values, and the animation framework will transform the displayed view. This system
is simple to implement, but it has a few drawbacks. First, it’s limited to operating
on View objects. If you want to animate something that is not a view, you’ll need
to do so yourself. Second, it operates only on a default set of properties; it does
not affect other properties. Finally, view animation alters only how the view is
drawn, not where it is positioned. Importantly, the rectangular hit area of views
is not moved during a view animation—a common bug found in animation code.
You need to alter the view after the animation is finished to update its position.

These limitations led to the deprecation of the view animation framework in
Android 3.0 and later. However, there are still a large number of pre-3.0 devices in
use, so when possible you should use the view animation framework for maximum
app compatibility.

Defining Animations

Like most UI code in Android, animations can be defined either in code or in XML.
It’s preferred to use XML, however, because it is easier to create complex animations
and is easily reusable. View animations defined in XML are placed in the res/anim/
folder. The basic structure of an animation is similar to that of a view. These are the
available options for view animation:

JJ translate, which moves a view

JJ scale, which changes the size of a view

JJ rotate, which rotates a view

JJ alpha, which changes the transparency of a view

Creating View Animations  235

Here is a simple example animation that moves (translates) a view:

<?xml version=”1.0” encoding=”utf-8”?>

<translate xmlns:android=”http://schemas.android.com/
p apk/res/android”

	 android:duration=”500”

	 android:toYDelta=”25%”

	 android:toXDelta=”25%” />

This should look familiar from other Android XML formats. The attributes here
set the duration and the ending position of the animation. The position is specified
as a percentage of the view size—this animation will move the view down and to
the right. Duration is always expressed in milliseconds. Position can be specified
as a percentage of the view size, as a percentage of the parent view size, or in pixel
values (with no units). This same animation can be created in Java code as follows:

TranslateAnimation anim =

	 new TranslateAnimation(

		 TranslateAnimation.RELATIVE_TO_SELF, 0.0f,

		 TranslateAnimation.RELATIVE_TO_SELF, 0.25f,

		 TranslateAnimation.RELATIVE_TO_SELF, 0.0f,

		 TranslateAnimation.RELATIVE_TO_SELF, 0.25f);

anim.setDuration(500);

Animations can be grouped into sets, with several animations occurring simul-
taneously. Here is the same example, but this time grouped in a set with another
animation that changes the transparency of the view:

<?xml version=”1.0” encoding=”utf-8”?>

<set xmlns:android=”http://schemas.android.com/apk/res/android”>

	 <translate

		 android:duration=”500”

		 android:toYDelta=”25%”

		 android:toXDelta=”25%” />

236  Chapter 9  Animation

	 <alpha

		 android:duration=”500”

		 android:fromAlpha=”1.0”

		 android:toAlpha=”0.0” />

</set>

This animation will cause the view to be moved down and to the right, while
simultaneously fading out. The fromAlpha and toAlpha attributes define the begin-
ning and ending alpha transparency, where 1.0 is fully opaque and 0.0 is fully
transparent.

In the example, the animations occur simultaneously, but that is not required.
You can have them occur in sequence, or partially overlapping, by defining the
android:startOffset attribute. Set this to a value in milliseconds to have the ani-
mation wait until that time offset before starting. Here is the same example again,
but this time with the alpha animation beginning after the translate has finished:

<?xml version=”1.0” encoding=”utf-8”?>

<set xmlns:android=”http://schemas.android.com/apk/res/android”>

	 <translate

		 android:duration=”500”

		 android:toYDelta=”25%”

		 android:toXDelta=”25%” />

	 <alpha

		 android:duration=”500”

	 	 android:startOffset=500”

		 android:fromAlpha=”1.0”

		 android:toAlpha=”0.0” />

</set>

You can use this attribute to make several animations occur in sequence. In
addition, you can nest animation sets to create animations that are even more
complex. Check the Android documentation for the full list of animation options.

Creating View Animations  237

Using Interpolators

An important aspect of animation is how it is applied over time. By default, ani-
mations occur in a linear fashion, meaning that they are applied evenly over the
duration of the animation. However, this often feels wrong to users. To address
this, you use what’s called an interpolator to change how the animation is applied.

Android supports several different interpolators: accelerate, decelerate, over-
shoot, bounce, and many more. Applying these interpolators is as simple as adding
an attribute to your animation tags:

<translate xmlns:android=”http://schemas.android.com/
p apk/res/android”

	 android:duration=”500”

	 android:toYDelta=”50%”

	 android:toXDelta=”50%”

	 android:interpolator=”@android:anim/accelerate_interpolator” />

Now when you run the animation, it will start slowly and accelerate until it
reaches the end of the duration.

Using Animations

To use an animation in your application, you have to apply it to a view and run
it. You do this by calling the startAnimation method on the view, passing it the
animation you want to run:

TextView tv = (TextView) findViewById(R.id.text);

Animation animation = AnimationUtils.loadAnimation(this, R.anim.slide);

tv.startAnimation(animation);

This animation will now cause the TextView to animate down and to the right.
However, once the animation is finished, the view will return to its previous position.
Remember that view animation alters only how the view is drawn, not the actual
view object itself. When the animation is finished, the view is drawn once again
and appears to return to its previous position, because it never really moved at all.
To address this, you can use an AnimationListener to change the view once its
animation has finished. Here is an example that listens for the end of the anima-
tion and makes the view invisible when finished:

238  Chapter 9  Animation

final TextView tv = (TextView) findViewById(R.id.text1);

Animation animation = AnimationUtils.loadAnimation(this, R.anim.slide);

animation.setAnimationListener(new AnimationListener() {

	 @Override

	 public void onAnimationStart(Animation animation) {}

	 @Override

	 public void onAnimationRepeat(Animation animation) {}

	 @Override

	 public void onAnimationEnd(Animation animation) {

		 tv.setVisibility(View.INVISIBLE);

	 }

});

tv.startAnimation(animation);

Using this example, you should be able to create an animation similar to
Figure 9.2.

Figure 9.2  In this view
animation, the circle animates
from the center to the bottom
right while fading out.

Tip:  As an alternative to using an AnimationListener, you can
set the fillAfter attribute of your animation to true. This will cause
the result of the animation to persist after it finishes. However, keep in mind
that only the display of the view will change. If you expect the user to tap
your view, you’ll need to use an animation listener to actually move it.

Creating View Animations  239

Adding a Clock-Flipping Animation to the TimeTracker

Since the TimeTracker app is being built to support Android 2.2, you’ll use view
animation to create a clock-flipping animation for the time counter. To do this, you’ll
need to first create a new layout for the counter, then define a few animations, and
finally add the logic to the app to properly change each digit. The counter will use
two separate TextViews for each digit. The animation can then slide one out and
the other in while fading them to create a nice flipping effect.

1.	 Create a layout called digit.xml that will contain the two TextViews, and
set one to be invisible by default:

<?xml version=”1.0” encoding=”utf-8”?>

<FrameLayout xmlns:android=”http://schemas.android.com/
p apk/res/android”

	 android:layout_width=”match_parent”

	 android:layout_height=”match_parent” >

	 <TextView

		 android:id=”@+id/text1”

		 android:layout_width=”wrap_content”

		 android:layout_height=”wrap_content”

		 android:layout_gravity=”center”

		 android:text=”0”

		 android:textSize=”50sp” />

	 <TextView

		 android:id=”@+id/text2”

		 android:layout_width=”wrap_content”

		 android:layout_height=”wrap_content”

		 android:layout_gravity=”center”

		 android:text=”1”

		 android:textSize=”50sp”

		 android:visibility=”invisible” />

</FrameLayout>

240  Chapter 9  Animation

2.	 Create a new layout for the counter itself, and name it counter.xml. It will
include multiple instances of the digit layout, separated by colons. Every-
thing is arranged in a horizontal LinearLayout:

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/
p apk/res/android”

	 android:id=”@+id/counter”

	 android:layout_width=”match_parent”

	 android:layout_height=”match_parent”

	 android:gravity=”center_horizontal” >

	 <include android:id=”@+id/hour1” layout=
	 p ”@layout/digit” android:layout_width=”wrap_content”
	 p android:layout_height=”wrap_content”/>

	 <include android:id=”@+id/hour2” layout=
	 p ”@layout/digit” android:layout_width=”wrap_content”
	 p android:layout_height=”wrap_content”/>

	 <TextView

		 android:layout_width=”wrap_content”

		 android:layout_height=”wrap_content”

		 android:text=”:”

		 android:textSize=”50sp”

		 android:gravity=”bottom”/>

	 <include android:id=”@+id/minute1” layout=
	 p ”@layout/digit” android:layout_width=”wrap_content”
	 p android:layout_height=”wrap_content”/>

	 <include android:id=”@+id/minute2” layout=
	 p ”@layout/digit” android:layout_width=”wrap_content”
	 p android:layout_height=”wrap_content”/>

	 <TextView

		 android:layout_width=”wrap_content”

		 android:layout_height=”wrap_content”

Creating View Animations  241

		 android:text=”:”

		 android:textSize=”50sp”

		 android:gravity=”bottom”/>

	 <include android:id=”@+id/second1” layout=
	 p ”@layout/digit” android:layout_width=”wrap_content”
	 p android:layout_height=”wrap_content”/>

	 <include android:id=”@+id/second2” layout=
	 p ”@layout/digit” android:layout_width=”wrap_content”
	 p android:layout_height=”wrap_content”/>

</LinearLayout>

3.	 Add the logic to set the time and trigger the animations. Start by calculating
the hours, minutes, and seconds:

long hours = 0;

long minutes = 0;

long seconds = 0;

if (time > 3600*1000) {

	 hours = time/(3600*1000);

	 time -= hours*3600*1000;

}

if (time > 60*1000) {

	 minutes = time/(60*1000);

	 time -= minutes*60*1000;

	 seconds = time/1000;

if (time > 1000) {

	 seconds = time/1000;

	 time -= seconds*1000;

}

242  Chapter 9  Animation

4.	 Animate each digit:

animateDigit(R.id.minute2, minutes%10);

animateDigit(R.id.minute1, minutes/10);

animateDigit(R.id.hour2, hours%10);

animateDigit(R.id.hour1, hours/10);

animateDigit(R.id.second2, seconds%10);

animateDigit(R.id.second1, seconds/10);

5.	 Create the animateDigit function; this function takes a digit layout ID and
a value, and it sets the digit while animating the transition. Next, prevent
the animation from running if a previous animation has not finished. Then
create an animation listener that sets the proper digit value once the ani-
mation is complete:

private void animateDigit(final int id, final long value) {

	 final View v = findViewById(id);

	 final TextView text1 = (TextView)
	 p v.findViewById(R.id.text1);

	 final TextView text2 = (TextView)
	 p v.findViewById(R.id.text2);

	 boolean running = false;

	 if (text1.getAnimation() != null)

			 running = !text1.getAnimation().hasEnded();

	 if (Long.parseLong(text1.getText().toString()) ==
	 p value || running) return;

	 Animation animation = AnimationUtils.loadAnimation
	 p (this, R.anim.slide_out);

	 animation.setAnimationListener(new AnimationListener() {

		 @Override

		 public void onAnimationStart(Animation animation) {

		 }

Creating View Animations  243

		 @Override

		 public void onAnimationRepeat(Animation animation) {

		 }

		 @Override

		 public void onAnimationEnd(Animation animation) {

			 text1.setText(“” + value);

		 }

	 });

	 text1.startAnimation(animation);

	 animation = AnimationUtils.loadAnimation
	 p (this, R.anim.slide_in);

	 text2.startAnimation(animation);

	 text2.setText(“” + value);

}

6.	 Create the sliding animations for the two text views. These should be familiar
by now. Here is the slide in animation:

<?xml version=”1.0” encoding=”utf-8”?>

<set xmlns:android=”http://schemas.android.com/
p apk/res/android”

	 android:interpolator=”@android:anim/
	 p accelerate_interpolator” >

	 <translate

		 android:duration=”250”

		 android:fromYDelta=”-50%” />

	 <alpha

Note:  This code could be made more efficient by performing the view
lookups at activity creation time and caching them for later use. You

could also use a single animation listener, rather than creating one on
every animation. However, for the TimeTracker app, this code is sufficient.

244  Chapter 9  Animation

		 android:duration=”250”

		 android:fromAlpha=”0.0”

		 android:toAlpha=”1.0” />

</set>

And the slide out animation:

<?xml version=”1.0” encoding=”utf-8”?>

<set xmlns:android=”http://schemas.android.com/
p apk/res/android”

	 android:interpolator=”@android:anim/
	 p accelerate_interpolator” >

	 <translate

		 android:duration=”250”

		 android:toYDelta=”50%” />

	 <alpha

		 android:duration=”250”

		 android:fromAlpha=”1.0”

		 android:toAlpha=”0.0” />

</set>

7.	 Run TimeTracker, and you will now see a nice animated clock (Figure 9.3).

As you can see, working with view animations is quite simple. However, the
limitations of view animations required a reworking of the Android animation
system. For 3.0 and later devices, it’s recommended you use the property anima-
tion framework.

Figure 9.3  The clock-flipping
animation for the TimeTracker app

Creating View Animations  245

Creating Property
Animations

Android 3.0 introduced an animation framework called property animation. This
framework allows you to change any object, not just views, and it actually changes
an object’s values, not just the way it is drawn. It may seem strange to animate
something that is not a view; after all, views are what the user sees. But you can
think of property animation as a framework for changing any value over time.
Generally, these values will cause some animation on the screen, but this is not
strictly necessary. Property animation is very powerful and can make some ani-
mations much easier.

ValueAnimator

The base class for all property animation is ValueAnimator. This class takes a starting
value, an ending value, and a duration, and it calculates a new value at each time step
of an animation; the time steps are determined by the speed of the animation thread.
The ValueAnimator requires an Interpolator and a TypeEvaluator to compute the
property values. Here is a brief explanation of each class:

JJ ValueAnimator. This is the base class for all animators. At each frame of
animation, it calculates the percentage of the animation that is completed,
based on the animation’s starting time and duration. It then calls the
Interpolator and TypeEvaluator to calculate the new property values.

JJ Interpolator. Like view animation, property animation allows you to set
different interpolators that define how the animated property changes
over time. After the ValueAnimator determines the percentage progress
of the animation, it passes that value to the interpolator to determine the
amount of change that should be applied to the property value. The default
interpolator is an accelerate-decelerate interpolator.

JJ TypeEvaluator. Because the property animation system can operate on any
type of value, it requires a TypeEvaluator class to convert between a float
progress value and the appropriate value for the type of the property. The
framework supplies evaluators for floats, integers, and color values. For
other types, you will have to implement your own subclass of TypeEvaluator.

246  Chapter 9  Animation

A simple example will demonstrate how ValueAnimator works:

ValueAnimator animation = ValueAnimator.ofFloat(0f, 1f);

animation.setDuration(250);

animation.start();

Here, an animation is created and set to run for a duration of 250 milliseconds,
starting at a floating point value of 0 and stopping at the value 1. The interpolator
is the default accelerate-decelerate interpolator. Notice the ofFloat method? That
method specifies that the values are floats and that a float TypeEvaluator should
be used. There are also ofInt and ofObject methods for creating animations with
integers and generic Object properties. In the case of objects, you will need to
supply a custom TypeEvaluator for the ValueAnimator to produce correct output.

This code does not yet do anything useful, because the values computed by
the ValueAnimator are not used. You can register an AnimatorListener and a
ViewAnimator.AnimatorUpdateListener to listen for animation events and make
updates accordingly. However, Android provides a convenience implementation of
ValueAnimator called ObjectAnimator that performs updates for you.

The ObjectAnimator class
ObjectAnimator, a subclass of ValueAnimator, sets the value of an object for you.
Its API is similar to that of ValueAnimator, but it has default implementations for
the callbacks that will update an object’s property. Here is a simple example that
updates the alpha transparency of a view:

View view = findViewById(R.id.my_view);

ObjectAnimator animation = ObjectAnimator.ofFloat(view, “alpha”,
p 0f, 1f);

animation.setDuration(250);

animation.start();

Creating Property Animations  247

Note that the API requires two new additions: the object to update and the
property that should be updated. In this case, the ObjectAnimator will update
the alpha transparency of the view from completely transparent to completely
opaque. There are a few conditions the object must meet in order for this to work:

JJ The object must have a camel-case style setter method for the property,
of the form set<propertyName>(). If your object does not have a setter,
consider creating a wrapper class that implements such a setter.

JJ The ofFloat, ofInt, and ofObject methods have an alternate form that
requires only the ending value. If you wish to use this short form, then
your object must have a getter method that the ObjectAnimator can use to
retrieve the starting value. This method must be a camel-case style getter
of the form get<propertyName>().

JJ The getter and setter must operate on the same value type that you supply
for the animator. So, if the getter and setter use integers, you must use the
ofInt method when creating the ObjectAnimator.

If you follow those rules, you can animate any object. For some properties of
views, you may need to call invalidate on the view to force it to redraw. By default,
most of the view properties will do this for you. See the Android documentation
for the full API requirements.

Note:  When setting the property value, be sure to use the camel-case
version of the property. While the ObjectAnimator will set the initial
letter to the correct case, any other letters will need to be properly

cased. For example, to call setTranslationX, you would supply the
string “translationX”. In addition, the ObjectAnimator uses reflec-

tion internally to set the properties of objects. This can be resource
intensive, so be mindful of animation performance.

248  Chapter 9  Animation

The Property class
In the example, the string alpha was used to specify that the alpha property of the
view should be modified. This allows you to set any property of an object. However,
it can sometimes lead to programming errors if the string does not match an actual
property of the object. To make this easier, Android 4.0 introduced the Property
class to ensure that the correct properties of an object are updated. Here is the
same example, but this time using the ALPHA property of View:

View view = findViewById(R.id.my_view);

ObjectAnimator animation = ObjectAnimator.ofFloat(view, View.ALPHA,
p 0f, 1f);

animation.setDuration(250);

animation.start();

As you can see, this allows you to statically check the property matches before
deploying your code. You can create your own Property implementations to achieve
type correctness when animating your objects.

Animator Sets

Property animations can be grouped into sets, just like view animations. To cre-
ate a set, you instantiate an AnimatorSet object and add animations to it. The
AnimatorSet object has several methods for defining how animations are grouped.
Here is a simple example that demonstrates the basics:

View v = findViewById(R.id.test);

AnimatorSet set = new AnimatorSet();

ObjectAnimator alpha = ObjectAnimator.ofFloat(v, View.ALPHA, 0f);

ObjectAnimator slide = ObjectAnimator.ofFloat(v, View.TRANSLATION_Y,
p 100f);

ObjectAnimator scale = ObjectAnimator.ofFloat(v, View.SCALE_X, 2f);

set.play(alpha).with(slide).after(scale);

set.setDuration(1000);

set.start();

Creating Property Animations  249

The play method schedules an animation to run and returns an AnimatorSet
.Builder object. The builder provides a simple declarative API that allows you to

schedule animations using natural language. In this example, the view will first
scale to become twice as large, then simultaneously slide down and fade away. The
entire animation will take 3 seconds. You can also supply another AnimatorSet
object to create more-complex animations with multiple different sets running
sequentially or in parallel.

It’s possible to create very complex animation sequences using AnimatorSet.
However, as you will see later, using ViewPropertyAnimator is an even easier way
to animate view classes.

Property Animations in XML

You are not limited to creating property animations in code. Like view animations,
property animations can be defined using XML, allowing for easy reuse of common
animations. When you write property animations in XML, you should place the
files in the res/animator/ directory. This is not strictly necessary, but it will help
you separate view animations from property animations. It is also required for the
Eclipse ADT plugin to properly locate your property animations.

Here is an example animation set, containing the same three animations from
before:

<?xml version=”1.0” encoding=”utf-8”?>

<set xmlns:android=”http://schemas.android.com/apk/res/android”

	 android:ordering=”sequentially” >

	 <objectAnimator

		 android:duration=”1000”

		 android:propertyName=”scaleX”

		 android:valueTo=”2”

		 android:valueType=”floatType” />

	 <set>

Tip:  The setDuration method of AnimatorSet applies the
supplied value to all animators contained within that set. It

does not set the total duration of the entire sequence of animations.

250  Chapter 9  Animation

		 <objectAnimator

			 android:duration=”1000”

			 android:propertyName=”translationY”

			 android:valueTo=”100”

			 android:valueType=”floatType” />

		 <objectAnimator

			 android:duration=”1000”

			 android:propertyName=”alpha”

			 android:valueTo=”0”

			 android:valueType=”floatType” />

	 </set>

</set>

This is very similar to the XML for view animations, but the attributes are a
little different. First, you must supply the property name that you wish the anima-
tion to update; if the property doesn’t exist on the object, then the animation does
nothing. Next, you must supply a value type; in this case, they are all floats. Finally,
just as with a view animation, you supply the duration and ending value. To load
and use this animation, add the following code:

TextView tv = (TextView) findViewById(R.layout.text);

AnimatorSet set = (AnimatorSet) AnimatorInflater.loadAnimator(this,
p R.animator.animation);

set.setTarget(tv);

set.start();

You can also define the ordering of the animations in a set. Set the optional
android:ordering property to sequential to play the animations one after the
other, rather than simultaneously.

Tip:  If there is any mistake in your animation XML, such as an
incorrect property name or an attribute that does not exist, the
animation simply does nothing. If you’re having trouble getting the
animation to run, double-check all the attributes.

Creating Property Animations  251

Hardware Acceleration

Android 3.0 added better support for drawing 2D graphics using hardware
acceleration. Previous versions of Android used more software operations for
graphics rendering. To add hardware acceleration support to your application,
add the android:hardwareAccelerated=”true” attribute to the <application>
tag in your application manifest. All applications targeting API level 14 or
above have this setting turned on by default.

In addition to enabling application-wide acceleration, you can also enable
(or disable) accelerated rendering at the activity or view level. Adding hard-
ware acceleration to a view can increase the performance of your animations.
For example, when using an ObjectAnimator, you can turn on acceleration to
get an extra boost of performance. You will need to disable it when finished,
however, to free graphics memory:

view.setLayerType(View.LAYER_TYPE_HARDWARE, null);

ObjectAnimator anim = ObjectAnimator.ofFloat(view, “alpha”, 1f);

anim.addListener(new AnimatorListenerAdapter() {

	 @Override

	 public void onAnimationEnd(Animator animation) {

		 view.setLayerType(View.LAYER_TYPE_NONE, null);

	 }

});

anim.start();

While hardware acceleration is generally not necessary, consider enabling it
if you have complex views or experience animation performance issues.

252  Chapter 9  Animation

ViewPropertyAnimator

ObjectAnimator is very powerful, but its ability to apply to any object requires that
it have a rather verbose API. Since the common case is animating a single view,
Android provides a convenience class to do just that: ViewPropertyAnimator. This
class has a very concise API that enables the chaining of multiple animation API
calls on a single line. In addition, because it is constrained to just views, it provides
some modest performance improvements over the ObjectAnimator class.

To use a ViewPropertyAnimator, you call the animate() method on a view,
which returns a ViewPropertyAnimator instance. This class provides methods for
updating the common view properties, such as position, transparency, and size.
In addition, each of the ViewPropertyAnimator methods returns itself, so you can
chain multiple API calls together. Here is a simple example that moves a view and
changes the alpha level:

TextView tv = (TextView) findViewById(R.id.text);

tv.animate().x(200).y(200).alpha(0f);

This code will move the text view to position 200 x 200 on the display, while
changing the alpha from its current value to 0. Note that it never calls start. By
default, the ViewPropertyAnimator is started immediately. Setting a start offset
will delay the beginning of the animation.

The expressive nature of the ViewPropertyAnimator API makes it very power-
ful. Consider using it to create animations when you are dealing only with views
and common view properties.

Creating Property Animations  253

LayoutTransition

A common animation you may wish to use is animating the adding and removing
of views in a layout. This animation is so common that Google created a simple
class to automate these animations for you. Called the LayoutTransition, it can
be added to any ViewGroup to animate changes to that ViewGroup layout. You set
the LayoutTransition by calling setLayoutTransition on the ViewGroup object:

ViewGroup vg = (ViewGroup) findViewById(R.id.relative_layout);

vg.setLayoutTransition(new LayoutTransition());

Alternatively, you can use layout transitions with a simple one-line XML change:

<FrameLayout xmlns:android=”http://schemas.android.com/
p apk/res/android”

	 android:layout_width=”match_parent”

	 android:layout_height=”match_parent”

	 android:animateLayoutChanges=”true” >

</LinearLayout>

With the android:animateLayoutChanges attribute, changes to the ViewGroup will
be animated using the default LayoutTransition animation. You can optionally use
a custom animation by calling the setAnimation method of LayoutTransition and
passing it an Animator and flags specifying that the animator applies to views being
added, removed, or changed. LayoutTransition is a simple way to add animations
to your app with almost no effort.

254  Chapter 9  Animation

Wrapping Up

This chapter covered the basics of animation on Android. There are currently
three animation frameworks: drawable animation, view animation, and property
animation. Drawable animations are simple to implement but require a different
image for each frame of animation. View animations can be used only on views
and have been deprecated in favor of property animations. Property animations
are very powerful and allow you to apply time-based functions to any object. In
this chapter, you learned that

JJ Drawable animations create sprite-style animated graphics by rapidly
switching images.

JJ You should define your animations using XML for easy reusability.

JJ Android supplies several interpolators that alter how your animation is
applied over time.

JJ You can use the ObjectAnimator class to animate properties of any object.

JJ The ViewPropertyAnimator class provides a very compact API for animat-
ing View objects.

JJ You can animate changes to your layout by adding the android:animate
LayoutChanges attribute to your layout view groups.

Wrapping Up  255

10

Creating
Custom Views

257

The Android view framework provides a rich visual

toolkit with which to create your application UI. How-

ever, you may find that the functionality you need is not

available in the stock views. For those cases, Android allows you

to create a custom view that will better match your needs. In this

chapter, you will learn that Android draws views in two passes, a

measure phase and a layout phase; that you should override the

onMeasure and onDraw methods when creating a custom view;

that using custom view attributes requires that you declare a new

XML namespace for those attributes; and that compound views

combine multiple views into a custom component.

Before learning how to create custom views, you should understand how Android
draws the display. As you learned earlier in the book, the Android UI is arranged
in a hierarchy. This hierarchy consists of the system elements, such as the notifi-
cation bar and the navigation bar, and the current activity view hierarchy. When
an activity is brought to the foreground, the system requests the root node of
that activity and then draws the view hierarchy on the display. You set the root
node of the activity when you call setContentView. The activity layout consumes
everything between the notification and action bars at the top and the navigation
bar at the bottom (if present).

The region of the display that is being drawn is flagged as invalid. Anything that
intersects with the invalid region needs to be redrawn. The system does this when
it draws an activity, but you can force this to happen by calling invalidate() on
a view. Once the view has been drawn, it is marked as valid.

Drawing takes place in two passes. In the first pass, the root of the hierarchy is
asked to measure itself. The root then measures each of its child views. Each child
view, in turn, measures its child views. In this way, the size of each view in the
view hierarchy is measured. At each level, a parent view may give its child views a
specific size or may request that the child set its own size.

Once the measuring phase is complete, the system performs the layout of the
view hierarchy. It walks down the layout tree in a predetermined order, drawing
each view onto a bitmap. Parent views are drawn first, and then the child views
are drawn on top of them. Once layout is complete, the drawing system draws the
bitmap to the screen to display it to the user.

Understanding How
Android Draws Views

258  Chapter 10  Creating Custom Views

Creating a Custom View

Creating your custom UI components starts with extending a view class. You can
extend the base View class for maximum configurability, or you can start with one
of the existing view classes and add the functionality you need. Which choice you
should make depends on your application needs. The basic implementation is the
same either way: extend the view and override the appropriate methods, adding
your customized code along the way.

This only applies to static views or low-performance 2D graphics. If you want to
create 3D graphics or complex animations, you should extend SurfaceView or use
either RenderScript or OpenGL. See Chapter 11 for more details on advanced graphics.

To learn how to create custom views, you’re going to create a simple custom
view that displays two lines in the shape of a cross (Figure 10.1). To start, create a
new class called CrossView that extends the View class:

Figure 10.1  A simple custom
view displaying two lines
that form a cross

Creating a Custom View  259

public class CrossView extends View {

	 public CrossView(Context context, AttributeSet attrs) {

		 super(context, attrs);

	 }

}

Note that the constructor takes both a Context and an AttributeSet object.
The Context provides the interface to the application resources and system ser-
vices that are needed to properly inflate the view and attach it to your activity.
The AttributeSet is required to pass XML parameters to your view. You’ll learn
more about this when you learn how to create custom XML attributes. You should
generally call through to the superclass in your overridden methods to perform
the initial setup of your view. With this done, there are two basic methods you will
likely want to override: onMeasure and onDraw.

onMeasure

The onMeasure method is called by the system to determine the size of the view and
its children. It’s passed two integers that are actually MeasureSpecs. A MeasureSpec
is just a combination of a mode flag and an integer size value. It’s implemented as
an integer to reduce unneeded object allocations. The mode tells the view how it
should calculate its size. These are the possible modes:

JJ UNSPECIFIED. The parent view has placed no constraints on this view; it
can be any size it wants.

JJ AT_MOST. The view can be any size less than or equal to the MeasureSpec size.

JJ EXACTLY. The view will be exactly the MeasureSpec size regardless of what
it requests.

When you create a custom view and override the onMeasure method, it is your
job to properly handle each of these cases. In addition, the measuring contract
dictates that you call the setMeasuredDimensions method with the determined
integer size values. If you fail to do this, an IllegalStateException will be thrown.

260  Chapter 10  Creating Custom Views

1.	 Override the onMeasure method of ExampleCustomView:

@Override

protected void onMeasure(int widthMeasureSpec,
p int heightMeasureSpec) {

	 setMeasuredDimension(calculateMeasure(widthMeasureSpec),
	 p calculateMeasure(heightMeasureSpec));

}

Remember, you are required to call setMeasuredDimension with the cal-
culated width and height values. Here, the code is using the same function
for width and height.

2.	 Implement the code for calculating the measurements. Start by adding a
default size for the view:

private static final int DEFAULT_SIZE = 100;

private int calculateMeasure(int measureSpec) {

	 int result = (int) (DEFAULT_SIZE *
	 p getResources().getDisplayMetrics().density);

}

Because the pixel density of devices varies, you must calculate the actual
pixel value using the display density.

Tip:  Your onMeasure method may be called multiple times as
the view system and your parent view calculate their layout. For
example, a parent view may call each of its children’s onMeasure methods
with UNSPECIFIED dimensions to gather their desired sizes, then again after
calculating the total space available. Your view may be asked to recalculate
its height and width if all the child views will not fit in the parent.

Creating a Custom View  261

3.	 Retrieve the mode and size from the MeasureSpec:

private int calculateMeasure(int measureSpec) {

	 int result = (int) (DEFAULT_SIZE *
	 p getResources().getDisplayMetrics().density);

	 int specMode = MeasureSpec.getMode(measureSpec);

	 int specSize = MeasureSpec.getSize(measureSpec);

}

4.	 Select the size based on the mode:

private int calculateMeasure(int measureSpec) {

	 int result = (int) (DEFAULT_SIZE *
	 p getResources().getDisplayMetrics().density);

	 int specMode = MeasureSpec.getMode(measureSpec);

	 int specSize = MeasureSpec.getSize(measureSpec);

	 if (specMode == MeasureSpec.EXACTLY) {

	 	 result = specSize;

	 } else if (specMode == MeasureSpec.AT_MOST) {

	 	 result = Math.min(result, specSize);

	 }

	 return result;

}

If the mode is set to EXACTLY, then the input size will be used. If the mode
is set to AT_MOST, then the smaller of the DEFAULT_SIZE and the input size
will be used. Otherwise, the DEFAULT_SIZE for the view will be used.

262  Chapter 10  Creating Custom Views

Resources

When you compile your Android application, the SDK doesn’t just blindly
copy your application resources into the APK. Instead, it compiles them into
an efficient binary format to reduce their size and improve lookup perfor-
mance. To access the resources at runtime, you use a Resources object. You
retrieve a Resources object by calling getResources() from your application
context. The Resources object provides methods that take the compiled inte-
ger IDs for your resources and return the resource with the proper type.

onDraw

The onDraw method is called when the view should draw its content. It is passed
a Canvas object, which holds the underlying bitmap for the view. The Canvas pro-
vides methods to do the basic drawing operations you use to build your view, and
it performs those drawing operations on its internal bitmap.

To perform the actual drawing, you can call one of the Canvas draw methods or
use a drawing primitive. Android provides several drawing primitives to construct
your UI: rectangles, ovals, paths, text, and bitmaps. You will also need a Paint object
to hold the styling that will be applied to the drawing. It handles things like color
and text size.

1.	 Create a Paint object to hold the styling for the cross:

private Paint mPaint;

public CrossView(Context context, AttributeSet attrs) {

	 super(context);

	 mPaint = new Paint();

	 mPaint.setAntiAlias(true);

	 mPaint.setColor(0xFFFFFFFF);

}

Tip:  Views also have a draw method that is called by their
parents to request the view be drawn. This method handles
basic drawing steps like setting up the canvas and drawing the
background. You should avoid overriding this method and instead
override the onDraw method.

Creating a Custom View  263

2.	 Override the onDraw method. All calls to draw on the canvas should be
bounded by corresponding save() and restore() calls:

@Override

protected void onDraw(Canvas canvas) {

	 super.onDraw(canvas);

	 canvas.save();

	 // Code goes here

	 canvas.restore();

}

3.	 To make your drawing code simpler, scale the canvas based on the size of
the view. Doing this allows you to draw using simple floats between 0 and 1
without carrying around dimensions:

@Override

protected void onDraw(Canvas canvas) {

	 super.onDraw(canvas);

	 canvas.save();

	 int scale = getWidth();

	 canvas.scale(scale, scale);

 canvas.restore()

}

4.	 To draw the two lines of the cross, you’ll use the drawLines method of Canvas:

float[] mPoints = {

	 0.5f, 0f, 0.5f, 1f,

	 0f, 0.5f, 1f, 0.5f};

@Override

protected void onDraw(Canvas canvas) {

	 super.onDraw(canvas);

	 canvas.save();

	 int scale = getWidth();

264  Chapter 10  Creating Custom Views

	 canvas.scale(scale, scale);

	 canvas.drawLines(mPoints, mPaint);

	 canvas.restore();

}

The drawLines method takes an array containing the lines to draw (two
x-coordinates and two y-coordinates per line endpoint) and a Paint object
that it uses to draw the lines on the canvas. By scaling the canvas, you are
able to specify all your dimensions using fractional float values.

5.	 Create an activity to display your view:

public class CustomViewsActivity extends Activity {

	 @Override

	 public void onCreate(Bundle savedInstanceState) {

		 super.onCreate(savedInstanceState);

		 setContentView(R.layout.main);

	 }

}

6.	 Open the main.xml file and add the CrossView:

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/
p apk/res/android”

	 android:layout_width=”fill_parent”

	 android:layout_height=”fill_parent”

	 android:orientation=”vertical”

	 android:gravity=”center_horizontal” >

	 <com.example.CrossView

	 	 android:layout_width=”wrap_content”

	 	 android:layout_height=”wrap_content” />

</LinearLayout>

Creating a Custom View  265

Inner Classes

When using custom views in your layouts, you generally use the class name
as the element tag name. However, this won’t work if your custom view is
an inner class of another Java class, because the required $ character is not
valid in Android’s XML layout. For example, if you were to make CrossView
an inner class of CustomViewsActivity, then the layout would not compile. In
that case, you would need to use the class attribute to set the fully qualified
view name:

<view

	 class=”com.example.CustomViewsActivity$CrossView”

	 android:layout_width=”wrap_content”

	 android:layout_height=”wrap_content”/>

Note that this uses the lowercase (view) rather than the capitalized (View)
element. This signifies that it’s a generic view and that the class definition
can be found in the class attribute.

When using custom views in XML, you must use the full package name to
inform the system which view class should be inflated.

7.	 Run the application, and you should see a cross shape similar to the one
in Figure 10.1.

266  Chapter 10  Creating Custom Views

Adding Custom Attributes
to Your Custom Views

Now that you have your custom view, you’ll want to make it configurable to use
throughout your UI. Adding methods to the class for setting attributes is standard
Java practice, but how do you add attributes in the XML layout? To accomplish
that, you’ll first need to declare the attributes, then add a new namespace to your
XML layouts, and finally handle the AttributeSet object that gets passed to your
custom views constructor.

Declaring the Attributes

The first step in creating custom attributes is to declare them. Custom attributes are
declared using a new XML resource element: <declare-styleable>. These elements
should be defined in a file named attrs.xml and placed in the res/values/ directory.

Create this file now to declare the CrossView attributes:

<?xml version=”1.0” encoding=”utf-8”?>

<resources>

	 <declare-styleable name=”cross”>

		 <attr name=”android:color” />

		 <attr name=”rotation” format=”string” />

	 </declare-styleable>

</resources>

The first thing to note is that the <declare-styleable> element has a name
attribute. You use this to reference the styles in your code. Each custom attribute
is declared using an <attr> element. The <attr> element itself has two attributes:
name and format. The attribute name is used to reference custom attributes in XML.
The attribute format is the data type. In this example, one of the default system
attributes is used. In that case, you don’t need to declare the format, as it is already
defined by Android.

Every attribute with a format can be declared only once. This example works
because it uses the existing android:color format. If you tried to use a different
format, the project would not build. If you want to reuse the same attribute for
multiple custom styles, declare it under the <resources> tag and include a format;
then declare it inside each <declare-styleable> element without a format. Here
is an example:

Adding Custom Attributes to Your Custom Views  267

<?xml version=”1.0” encoding=”utf-8”?>

<resources>

	 <attr name=”test” format=”string” />

	 <declare-styleable name=”foo”>

		 <attr name=”test” />

	 </declare-styleable>

	 <declare-styleable name=”bar”>

		 <attr name=”test” />

	 </declare-styleable>

</resources>

You can create custom attributes with predefined values that are similar to the
built-in attributes like wrap_content and match_parent. To do that, you declare
the values using <enum> or <flag> elements:

<attr name=”enum_attr”>

	 <enum name=”value1” value=”1” />

	 <enum name=”value2” value=”2” />

</attr>	

<attr name=”flag_attr”>

	 <flag name=”flag1” value=”0x01” />

	 <flag name=”flag2” value=”0x02” />

</attr>

Tip:  There is no real documentation on the possible attribute
format types. The best documentation is the Android source

code for the android.R.styleable.attr.xml file and the android.content
.res.TypedArray class. Current formats include reference, string, color,

dimension, Boolean, integer, float, fraction, enum, and flag.

268  Chapter 10  Creating Custom Views

Enums and flags are required to be integers. The difference between them is
that the flag attributes can be combined using a bitwise OR operation. Use flags
when you want the option to combine multiple attribute values:

<com.example.Foo example:flag_attr=”flag1|flag2” />

Using Attributes in XML

To use the new attributes in your XML code, you first must declare the namespace
for the view. Recall that in all your layouts, the enclosing ViewGroup always has an
XML namespace attribute:

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/	
p apk/res/android”

	 android:layout_width=”fill_parent”

	 android:layout_height=”fill_parent”

	 android:orientation=”vertical” >

</LinearLayout>

This namespace declares that all attributes that begin with the keyword android:
can be found in the android package. To use custom attributes, you declare a
new namespace with a new package. This prevents your custom attributes from
colliding with system attributes that may be defined in later versions of Android.

Add a new namespace for the CrossView attributes:

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/
p apk/res/android”

	 xmlns:example=”http://schemas.android.com/apk/res/com.example”

	 android:layout_width=”fill_parent”

	 android:layout_height=”fill_parent”

	 android:orientation=”vertical”

	 android:gravity=”center_horizontal” >

</LinearLayout>

Adding Custom Attributes to Your Custom Views  269

This declares that all attributes that begin with example: will reference a view
in the com.example package. (You can choose any prefix you want; it’s not neces-
sary to use example.)

Now you can create a new layout file with more than one cross, each with dif-
ferent attributes:

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/
p apk/res/android”

	 xmlns:example=”http://schemas.android.com/apk/res/com.example”

	 android:layout_width=”fill_parent”

	 android:layout_height=”fill_parent”

	 android:orientation=”vertical”

	 android:gravity=”center_horizontal” >

	 <com.example.CrossView

		 android:layout_width=”wrap_content”

		 android:layout_height=”wrap_content” />

	 <com.example.CrossView

		 android:layout_width=”wrap_content”

		 android:layout_height=”wrap_content”

		 example:rotation=”30”

	 	 android:color=”#0000FF” />

	 <com.example.CrossView

		 android:layout_width=”wrap_content”

		 android:layout_height=”wrap_content”

		 example:rotation=”45”

	 	 android:color=”#FFFF00” />

</LinearLayout>

This creates three crosses that are arranged vertically in a row. The second cross
is rotated 30 degrees and is blue. The third cross is rotated 45 degrees and is yellow.

270  Chapter 10  Creating Custom Views

Using Attributes in Code

Now that you have the attributes defined, you need to create a constructor to use
them. Remember the AttributeSet object you were passed in the constructor of
your custom view:

public CrossView(Context context, AttributeSet attrs) {

	 super(context, attrs);

	 ...

The AttributeSet object is passed to your view by the system when it is instan-
tiated. This object contains all the attributes declared by the XML layout, but it
stores them in a more efficient binary format. Use it to retrieve the attribute values
and set them on your view.

1.	 Update the CrossView constructor to query the AttributeSet object for
the new rotation and color attributes:

public CrossView(Context context, AttributeSet attrs) {

	 super(context);

	 mPaint = new Paint();

	 mPaint.setAntiAlias(true);

	 mPaint.setColor(0xFFFFFFFF);

	 TypedArray arr = getContext().obtainStyledAttributes	
	 p (attrs, R.styleable.cross);

	 int color = arr.getColor(R.styleable.cross_android_color, 	
	 p Color.WHITE);

	 float rotation = arr.getFloat(R.styleable.cross_rotation, 	
	 p 0f);

	 // Remember to call this when finished

	 arr.recycle();

	 setColor(color);

	 setRotation(rotation);

}

Adding Custom Attributes to Your Custom Views  271

Here, the obtainStyleAttributes method is used to create a TypedArray,
which is a convenience class for accessing the values stored in an AttributeSet.
This class performs caching internally, so always call recycle when you are
finished using it. Also, note that you access your custom attributes using
a combination of the <declare-styleable> name and the <attr> name.

2.	 Add a rotation field and update the onDraw method to rotate the canvas:

float mRotation;

@Override

protected void onDraw(Canvas canvas) {

	 super.onDraw(canvas);

	 canvas.save();

	 int scale = getWidth();

	 canvas.scale(scale, scale);

	 canvas.rotate(mRotation);

	 canvas.drawLines(mPoints, mPaint);

	 canvas.restore();

}

3.	 Add two new setters on the view. These are called by the constructor:

public void setColor(int color) {

	 mPaint.setColor(color);

}

public void setRotation(float degrees) {

	 mRotation = degrees;

}

272  Chapter 10  Creating Custom Views

Now when you run the app, you should see three crosses with different colors
and rotations (Figure 10.2).

Figure 10.2  Custom attributes
are used to rotate and change
the color of CrossView.

Adding Custom Attributes to Your Custom Views  273

Creating Compound
Components

Creating a custom view by extending the View class gives you the most control over
your custom view. However, you will often need something simpler, such as adding
functionality to an existing view. It is much easier to create a custom component
by extending one of the built-in Android views and expanding its functionality. By
leveraging the built-in view code, you can focus on adding enhanced functionality.
A simple way to do this is by creating a new view that combines several existing
views. This is called a compound component.

Creating a Compound Component

Compound components have two primary advantages over custom views. First, they
leverage the existing view group classes to create the layout for you. And second,
you won’t need to override the onMeasure and onDraw methods.

1.	 Create a new layout file named toggle_text.xml, and place it in the res/
layout/ folder:

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/
p apk/res/android”

	 android:layout_width=”match_parent”

	 android:layout_height=”match_parent”

	 android:orientation=”horizontal” >

	 <ToggleButton

		 android:id=”@+id/toggle_button”

		 android:layout_width=”wrap_content”

		 android:layout_height=”wrap_content”

		 android:text=”ToggleButton” />

	 <EditText

		 android:id=”@+id/edit_text”

		 android:layout_width=”0dp”

		 android:layout_height=”wrap_content”

		 android:layout_weight=”1” >

274  Chapter 10  Creating Custom Views

		 <requestFocus />

	 </EditText>

</LinearLayout>

This is simply a horizontal LinearLayout with a ToggleButton and an
EditText.

2.	 Create a new class that extends LinearLayout. Use the LayoutInflater
system service to inflate the layout you just created:

public class ToggleText extends LinearLayout {

	 public ToggleText(Context context, AttributeSet attrs) {

		 super(context, attrs);

		 LayoutInflater inflater = (LayoutInflater) context.
		 p getSystemService(Context.LAYOUT_INFLATER_SERVICE);

		 View view = inflater.inflate(R.layout.toggle_text,
		 p this);

	 }

}

Note that you are passing in this as the parent ViewGroup for the inflated
layout.

3.	 Add the custom functionality for your compound view. Add a listener for
changes in the selected state of the toggle button, and set the enabled state
of the EditText accordingly:

public class ToggleText extends LinearLayout
p implements OnCheckedChangeListener {

	 EditText mTextView;

	 public ToggleText(Context context, AttributeSet attrs) {

		 super(context, attrs);

		 LayoutInflater inflater = (LayoutInflater) context.
		 p getSystemService(Context.LAYOUT_INFLATER_SERVICE);

		 View view = inflater.inflate(R.layout.toggle_text,
		 p this);

Creating Compound Components  275

	 	 mTextView = (EditText) view.findViewById	
	 	 p (R.id.edit_text);

	 	 ToggleButton toggle = (ToggleButton) 	
	 	 p view.findViewById(R.id.toggle_button);

	 	 toggle.setChecked(true);

	 	 toggle.setOnCheckedChangeListener(this);

	 }

	 @Override

	 public void onCheckedChanged(CompoundButton buttonView, 	
	 p boolean isChecked) {

	 	 mTextView.setEnabled(isChecked);

	 }

}

You can now use the new compound component in layouts, and the toggle
button will change the enabled state of the EditText (Figure 10.3).

Figure 10.3  A compound view
that combines a ToggleButton
with an EditText. The EditText
is disabled when the
ToggleButton is unchecked.

276  Chapter 10  Creating Custom Views

Optimizing the Layout

If you use the Hierarchy Viewer tool to look at the layout hierarchy for the
ToggleButton you just created, you will see something like Figure 10.4. Notice
that the ToggleButton class has a single child element: the LinearLayout. But
ToggleButton itself is a LinearLayout, so this is an unnecessary level in your hier-
archy. To remove it, open the toggle_text.xml file and change the LinearLayout
element to a merge element:

<?xml version=”1.0” encoding=”utf-8”?>

<merge xmlns:android=”http://schemas.android.com/apk/res/android”

	 android:layout_width=”match_parent”

	 android:layout_height=”match_parent”

	 android:orientation=”horizontal” >

	 <ToggleButton

		 android:id=”@+id/toggle_button”

Figure 10.4  The ToggleButton
has an unnecessary
LinearLayout as its child.

Creating Compound Components  277

		 android:layout_width=”wrap_content”

		 android:layout_height=”wrap_content”

		 android:text=”ToggleButton” />

	 <EditText

		 android:id=”@+id/edit_text”

		 android:layout_width=”0dp”

		 android:layout_height=”wrap_content”

		 android:layout_weight=”1” >

		 <requestFocus />

	 </EditText>

</merge>

Now when you view the ToggleButton in the Hierarchy Viewer, the unneces-
sary LinearLayout will be gone (Figure 10.5).

Figure 10.5  With the <merge>
element, the hierarchy of the
ToggleButton view is flatter
and more efficient.

278  Chapter 10  Creating Custom Views

Wrapping Up

Creating custom views gives you greater control over the look and functionality of
your application. Android allows you to extend the built-in view classes, leverag-
ing the existing drawing code while adding your own functionality. And by adding
custom attributes, you can use your new views in XML layout files for easy UI
development. In this chapter, you learned that

JJ You create a completely custom view by extending View and overloading
the onMeasure and onDraw methods.

JJ You use custom attributes of a view by declaring the XML namespace for
those attributes.

JJ Compound components let you easily build custom views out of existing
components but that you must remember to merge the layout with your
ViewGroup.

Wrapping Up  279

11

Creating
Advanced
Graphics

281

The Android view framework is convenient for creat-

ing complex layouts. However, this convenience comes

at the cost of performance. When performance is critical,

Android provides several more-robust graphics capabilities with

increasing levels of difficulty. In this chapter, you will learn that

the SurfaceView and TextureView classes use the standard Canvas

object combined with a separate rendering thread to achieve bet-

ter performance than standard views; that the new RenderScript

framework can be used to create architecture-independent graph-

ics rendering; and that OpenGL is available for serious graphics

work and games.

The easiest way to increase drawing performance is by moving your performance-
critical drawing operations onto a separate thread. However, as you learned earlier,
all drawing operations must take place on the UI thread or an exception will be
thrown. For this reason, Android provides the SurfaceView class. This class allows
you to achieve better performance by executing your drawing code outside the
normal UI thread. By drawing in a separate thread, you can rapidly update graphics
without waiting for the rest of the view hierarchy to finish drawing.

Implementing SurfaceView

The SurfaceView exists outside the normal view hierarchy. It actually exists behind
the normal window and is made visible by punching a hole through the view layout
in your app. The SurfaceView can then be updated independently of the rest of
your views without waiting for the UI thread.

To use a SurfaceView, you’ll need to create a new view that extends the SurfaceView
class. In addition, you should implement the SurfaceView.Callback interface and
provide implementations of the required callbacks:

1.	 Create a new ExampleSurfaceView class that extends SurfaceView and
implements SurfaceView.Callback:

public class ExampleSurfaceView extends SurfaceView implements
p SurfaceHolder.Callback {

}

2.	 You need to initialize the superclass, so create a constructor that takes a
Context object. You should also set up the callback here:

public ExampleSurfaceView(Context context) {

	 super(context);

	 SurfaceHolder holder = getHolder();

	 holder.addCallback(this);

}

3.	 Now implement the callbacks. The first, surfaceCreated, is called when the
surface view is ready to be used. You should start your drawing code here:

Using Canvas

282  Chapter 11  Creating Advanced Graphics

@Override

public void surfaceCreated(SurfaceHolder holder) {

	 // Called when the surface view is first created.
	 p Start your drawing here.

}

4.	 The surfaceChanged method is called when the view dimensions change,
typically when the device is rotated:

@Override

public void surfaceChanged(SurfaceHolder holder, int format,
p int width,

		 int height) {

	 // Called when the surface view dimensions change.
	 p Typically called when the device is rotated.

}

5.	 The surfaceDestroyed method is called when the view is being destroyed.
You should clean up any threads and drawing code here:

@Override

public void surfaceDestroyed(SurfaceHolder holder) {

	 // Called when the surface is destroyed. Clean up any
	 p threads here.

}

Drawing to a SurfaceView

Unlike a normal view, all drawing to a SurfaceView takes place on a separate thread.
To draw on a SurfaceView, you must call the lockCanvas method of SurfaceHolder,
which returns a Canvas object. The lockCanvas method prevents the SurfaceView from
updating the underlying surface until you call the corresponding unlockCanvasAndPost
method. This eliminates the need for synchronization around writing to the surface
(though you still need to synchronize fields between your threads). You should wrap
all your drawing to a SurfaceView in lockCanvas and unlockCanvasAndPost blocks.

Using Canvas  283

The example doesn’t do anything yet, so you’ll need to change things to draw
something. The whole reason to make a SurfaceView is to enable continuous drawing
using a separate thread, so create a new thread and use it to animate a triangle. At the
same time, update the background color of the SurfaceView based on the user’s touch.

1.	 Create a new class named DrawingThread that extends Thread and calls
the onDraw method of the view. This thread will run every 20 milliseconds
(for 50 fps) and will update an angle field for the rotation of the triangle.
Remember to synchronize the drawing:

private class DrawingThread extends Thread {

	 boolean keepRunning = true;

	 @Override

	 public void run() {

		 Canvas c;

		 while (keepRunning) {

			 c = null;

			 try {

				 c = mSurfaceHolder.lockCanvas();

				 synchronized (mSurfaceHolder) {

					 mAngle += 1;

					 onDraw(c);

				 }

			 } finally {

				 if (c != null)

					 mSurfaceHolder.unlockCanvasAndPost(c);

			 }

			 // Run the draw loop at 50 fps

			 try {

Note:  There is no guarantee that the surface will be unchanged the
next time you call lockCanvas. You should not rely on using the canvas

returned by lockCanvas() to hold drawing state.

284  Chapter 11  Creating Advanced Graphics

				 Thread.sleep(20);

			 } catch (InterruptedException e) {}

		 }

	 }

}

2.	 Add some fields to your view for the RGB colors, the triangle, and the new thread:

DrawingThread mThread;

int mRed = 0;

int mGreen = 0;

int mBlue = 127;

float[] mVertices = new float[6];

int[] mColors = {

	 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,

	 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF};

Paint mPaint = new Paint();

float mAngle = 0;

float mCenterX = 0;

float mCenterY = 0;

public ExampleSurfaceView(Context context) {

	 super(context);

	 mSurfaceHolder = getHolder();

	 mSurfaceHolder.addCallback(this);

	 mThread = new DrawingThread();

	 mPaint.setColor(0xFFFFFFFF);

	 Paint.setStyle(Paint.Style.FILL);

}

The triangle is defined using lines, called vertices. The triangle will be filled
with color based on the mColors array.

Using Canvas  285

3.	 Update the surfaceCreated and surfaceDestroyed methods to start and
stop the thread:

@Override

public void surfaceCreated(SurfaceHolder holder) {

	 mThread.keepRunning = true;

	 mThread.start();

}

@Override

public void surfaceDestroyed(SurfaceHolder holder) {

	 mThread.keepRunning = false;

	 boolean retry = true;

	 while (retry) {

	 	 try {

	 	 	 mThread.join();

	 	 	 retry = false;

	 	 } catch (InterruptedException e) {}

	 }

}

4.	 Update the surfaceChanged method to create the vertices of the triangle,
using the supplied width and height values:

@Override

public void surfaceChanged(SurfaceHolder holder, int format,
p int width, int height) {

	 mVertices[0] = width/2;

	 mVertices[1] = height/2;

	 mVertices[2] = width/2 + width/5;

	 mVertices[3] = height/2 + width/5;

	 mVertices[4] = width/2;

	 mVertices[5] = height/2 + width/5;

286  Chapter 11  Creating Advanced Graphics

	 mCenterX = width/2 + width/10;

	 mCenterY = height/2 + width/10;

	 }

The vertices define the edges of the triangle. The center values define the
pivot point around which the triangle will rotate.

5.	 Override the onDraw method of your view. Update the color and draw the
triangle:

@Override

protected void onDraw(Canvas canvas) {

	 canvas.drawRGB(mRed, mGreen, mBlue);

	 canvas.rotate(mAngle, mCenterX, mCenterY);

	 canvas.drawVertices(Canvas.VertexMode.TRIANGLES, 6,
	 p mVertices, 0, null, 0, mColors, 0, null, 0, 0, mPaint);

}

6.	 Implement the onTouchEvent method and update the color as you slide
your finger across the screen. Note the synchronization on the changing
of the color values:

@Override

public boolean onTouchEvent(MotionEvent event) {

	 switch (event.getAction()) {

	 case MotionEvent.ACTION_DOWN:

	 case MotionEvent.ACTION_MOVE:

		 synchronized(mSurfaceHolder) {

			 mRed = (int) (255*event.getX()/getWidth());

			 mGreen = (int) (255*event.getY()/getHeight());

		 }

		 return true;

	 }

	 return super.onTouchEvent(event);

}

Using Canvas  287

Run the example and you should see a slowly rotating triangle (Figure 11.1).
Sliding your finger around the screen will change the background color.

The TextureView Class

The SurfaceView class lets you improve performance by moving the drawing onto a separate thread. But this
comes with some significant drawbacks. In particular, because SurfaceView exists outside the normal view
system, it can’t be transformed the way a normal view can. You can’t move, scale, or rotate a surface view.
In addition, SurfaceView doesn’t support transparency effects using setAlpha.

To address these shortcomings, Android 4.0 introduced TextureView. A texture view is essentially the same as
a surface view, but it behaves as a normal view and supports normal view operations. You can use a texture
view to display a content stream such as video camera preview, while also transforming it using the View API.

TextureView requires hardware acceleration and, because it is more flexible than SurfaceView, incurs a perfor-
mance hit. You would not want to use it for running a full-screen game, for example. However, if you are devel-
oping on Android 4.0 and need to transform a high-performance canvas view, consider using TextureView.

Figure 11.1  A rotating triangle
drawn by a SurfaceView.
Sliding your finger across the
screen should change the color.

288  Chapter 11  Creating Advanced Graphics

Using RenderScript

RenderScript is a language, API, and runtime used to write high-performance code
on Android. Introduced in Android 3.0, RenderScript includes both graphics APIs
and computing APIs similar to CUDA or OpenCL. It is architecture-independent,
so there is no need to customize your code for different CPU or GPU processors.
RenderScript optimizes your running code by selecting the appropriate processor
and number of cores at runtime. As a fallback, RenderScript will run all operations
on the CPU if the appropriate GPU is unavailable. This section covers the basics
of using RenderScript with a simple example.

The RenderScript File

RenderScript uses a syntax based on the C99 standard of the C programming
language. This makes it immediately familiar to anyone who has developed in C.
Here is a simple RenderScript file example that will rotate a triangle onscreen and
set the background color:

#pragma version(1)

#pragma rs java_package_name(com.example);

#include “rs_graphics.rsh”

// Background color is a 4-part float

float4 bgColor;

// Triangle mesh

rs_mesh gTriangle;

// Rotation float

float gRotation;

void init() {

	 // Initialize background color to black

	 bgColor = (float4) { 0.0f, 0.0f, 0.0f, 1.0f };

	 gRotation = 0.0f;

}

Note:  RenderScript relies on OpenGL ES 2.0 APIs that are not
available in the emulator. To run the RenderScript code example,
you will need an Android device.

Using RenderScript  289

int root() {

	 // Set background color

	 rsgClearColor(bgColor.x, bgColor.y, bgColor.z, bgColor.w);

	 // Load matrix for translate and rotate

	 rs_matrix4x4 matrix;

	 rsMatrixLoadIdentity(&matrix);

	 rsMatrixTranslate(&matrix, 300.0f, 300.0f, 0.0f);

	 rsMatrixRotate(&matrix, gRotation, 0.0f, 0.0f, 1.0f);

	 rsgProgramVertexLoadModelMatrix(&matrix);

	 // Draw the triangle mesh

	 rsgDrawMesh(gTriangle);

	 // Animate rotation

	 gRotation += 1.0f;

	 // Run every 20 milliseconds

	 return 20;

}

This code should be saved in a file called example.rs in your Android project’s
src/ directory. The first two lines declare the RenderScript version and the Java
package that contains the Java code that will use the RenderScript. A graphics
library, rs_graphics.rsh, is included. The init() and root() methods are special
to RenderScript. init is called when the script is first loaded. The root function
is like the main function in a standard C application; it will be called each time the
script runs. The number returned from root() requests the interval in milliseconds
at which the script should be called. Here, it is requested that the code be called
every 20 milliseconds. It does not guarantee that the code will be called that often,
however, only that the system will attempt to call the script that often.

Tip:  The full native RenderScript API is available in the Android
SDK. Navigate to <sdk_root>/platforms/android-11/renderscript,

and find the header files in the include/ and clang-include/ directories.

290  Chapter 11  Creating Advanced Graphics

The rest of the root method contains the graphics drawing code, which should
be self-explanatory. The color is set, and then a matrix is used to translate the
surface and rotate it. The triangle is represented by an rs_mesh that will be set from
the Java class. Finally, the rotation of the triangle is updated every time root runs.

The Java API

Once the RenderScript file is saved in your src/ directory, the Android build tools
will generate a reflected Java file you can use in your application. This file is given
the name ScriptC_your_renderscript_file_name and extends the ScriptC class.
To use the RenderScript you just created, you’ll need to build a view that extends
the RSSurfaceView class:

1.	 Create a new class named ExampleView that extends RSSurfaceView:

public class ExampleView extends RSSurfaceView {

	 public ExampleView(Context context) {

		 super(context);

	 }

}

2.	 Initialize the RenderScript Java objects. You first must create a RenderScriptGL
object, passing it a SurfaceConfig. The RenderScriptGL object ties the output
of the RenderScript to the display via the root() method:

public class ExampleView extends RSSurfaceView {

	 private RenderScriptGL mRS;

	 private ScriptC_example mScript;

	 public ExampleView(Context context) {

		 super(context);

	 	 final RenderScriptGL.SurfaceConfig sc = 	
	 	 p new SurfaceConfig();

	 	 mRS = createRenderScriptGL(sc);

	 	 mScript = new ScriptC_example(mRS, getResources(), 	
	 	 p R.raw.example);

	 	 buildTriangle();

Using RenderScript  291

	 	 mRS.bindRootScript(mScript);

	 }

}

Once the RenderScriptGL object is created, you can instantiate the ScriptC
object that contains the interface to your RenderScript file. Finally, you must
call the bindRootScript method to set your RenderScript as the handler
for calls to render the surface. You will implement the buildTriangle()
method shortly.

3.	 Create a simple activity that uses your new view as its content:

public class RenderScriptExampleActivity extends Activity {

	 @Override

	 public void onCreate(Bundle savedInstanceState) {

		 super.onCreate(savedInstanceState);

		 setContentView(new ExampleView(this));

	 }

}

4.	 The reflected Java API lets you set variables in your RenderScript using
auto-generated setters. A setter for the bgColor variable has already been
created and can be used to change the background color. Add some inter-
activity by updating the graphics when you touch the screen. Override the
onTouchEvent method, and call the set_bgColor method:

@Override

public boolean onTouchEvent(MotionEvent event) {

	 switch (event.getAction()) {

	 case MotionEvent.ACTION_DOWN:

	 case MotionEvent.ACTION_MOVE:

		 float x = event.getX()/getWidth();

		 float y = event.getY()/getHeight();

		 Float4 color = new Float4(x, y, 0.5f, 1.0f);

292  Chapter 11  Creating Advanced Graphics

		 mScript.set_bgColor(color);

		 return true;

	 }

	 return super.onTouchEvent(event);

}

5.	 Finally, create the buildTriangle() method, which will define the triangle
that your RenderScript will draw:

public void buildTriangle() {

	 Mesh.TriangleMeshBuilder triangles =
	 p new Mesh.TriangleMeshBuilder(mRS, 2,
	 p Mesh.TriangleMeshBuilder.COLOR);

	 triangles.addVertex(0.f, -75.0f);

	 triangles.addVertex(-150.0f, 75.0f);

	 triangles.addVertex(150.0f, 75.0f);

	 triangles.addTriangle(0, 1, 2);

	 Mesh mesh = triangles.create(true);

	 mScript.set_gTriangle(mesh);

}

The TriangleMeshBuilder is used to create a triangle and draw it on the
screen. You add each vertex and then call the addTriangle method to build
the triangle out of the specified vertex calls. In this case, the last three ver-
tices are used. Finally, you create the mesh and pass it to the RenderScript.

When you run this, you will see a slowly rotating triangle, just as in the
SurfaceView example. The background color will change as you slide your finger
across the screen. Each call to the set_bgColor method updates the bgColor vari-
able. The root() method is called every 20 milliseconds and updates the back-
ground color and the triangle. It also updates the rotation angle by 1 degree. Try it
out by loading the app on a device and sliding your finger across the screen.

This simple example only scratches the surface of the RenderScript API. In addi-
tion to advanced graphics, RenderScript supports high-performance computing
using the compute APIs. These APIs are primarily found in the rs_cl.rsh header file.

Using RenderScript  293

Using OpenGL

Android provides full support for hardware-rendered graphics using the OpenGL
ES 1.0/1.1 and OpenGL ES 2.0 standards. OpenGL APIs can be called through the
Java framework and through the Native Development Kit (NDK). The Java frame-
work provides an easy-to-use API but suffers from a small performance hit. For
full accelerated graphics support, or to port existing graphics code, the NDK offers
the best solution. However, this is outside the scope of this book.

OpenGL Basics

A full explanation of OpenGL graphics would consume an entire book. However, a
small example should give you a taste of the Java framework APIs that are available.
Creating OpenGL graphics requires two classes: GLSurfaceView and GLSurfaceView
.Renderer. The GLSurfaceView class is similar to SurfaceView and provides the glue

between OpenGL-rendered graphics and Android’s standard view framework. This
class provides a separate rendering thread that generates graphics independently
of the UI thread. In addition, GLSurfaceView provides some debugging tools that
assist in tracking down errors in rendering code.

Typically, you will extend GLSurfaceView and override the onTouchEvent
method to provide interactivity with your custom graphics. Here is an example
that simply paints the screen black. This example will be compatible with the
OpenGL ES 1.0 standard:

1.	 Create a class named ExampleRenderer that extends GLSurfaceView.Renderer:

public class ExampleRenderer implements GLSurfaceView.Renderer {

}

Now implement the required callbacks.

2.	 Implement onSurfaceCreated. It’s called when the GLSurfaceView is first
created. Use it to do initial setup. For this simple example, it does nothing:

public void onSurfaceCreated(GL10 gl, EGLConfig config) {

}

Note:  The Android emulator does not support OpenGL ES 2.0
graphics. You will need to test on a physical device to develop an

app that uses the 2.0 standard.

294  Chapter 11  Creating Advanced Graphics

3.	 Implement onDrawFrame. It’s called every time the GLSurfaceView is updated.
This is where the bulk of your code will go:

public void onDrawFrame(GL10 gl) {

	 gl.glClear(GL10.GL_COLOR_BUFFER_BIT |
	 p GL10.GL_DEPTH_BUFFER_BIT);

}

This is an OpenGL call that clears the specified buffers, which are referenced
via their bit values. Here the color and depth buffers are cleared, making
the screen black.

4.	 Implement onSurfaceChanged. It’s called when the basic geometry of the
GLSurfaceView changes. This is most often called when you rotate the device:

public void onSurfaceChanged(GL10 gl, int width, int height) {

	 gl.glViewport(0, 0, width, height);

}

Here the view port is set to entirely fill the view dimensions.

5.	 Create a simple activity to display the OpenGL surface:

public class ExampleOpenGLActivity extends Activity {

	 GLSurfaceView mGLView;

	 @Override

	 public void onCreate(Bundle savedInstanceState) {

		 super.onCreate(savedInstanceState);

		 mGLView = new GLSurfaceView(this);

		 setContentView(mGLView);

	 }

	 @Override

	 protected void onPause() {

		 super.onPause();

		 mGLView.onPause();

	 }

Using OpenGL  295

	 @Override

	 protected void onResume() {

		 super.onResume();

		 mGLView.onResume();

	 }

}

You should remember to call the appropriate life cycle methods on GLSurfaceView
as your activity runs; OpenGL rendering can be very intensive, and this ensures that
your app does not consume resources when it doesn’t need them.

Run this example, and you’ll see that it just paints the screen black on each
frame. This isn’t very interesting, so in the next section you’ll add some graphics.

Drawing Graphics

You can easily re-create the example from the RenderScript section to rotate a
triangle and set the background color as you slide your finger across the screen.

1.	 Update the ExampleRenderer, and add a new setColor method with member
variables for color:

private float mRed;

private float mGreen;

private float mBlue;

public void setColor(float red, float green, float blue) {

	 mRed = red;

	 mGreen = green;

	 mBlue = blue;

}

2.	 Add member variables to draw a triangle, and initialize its vertices in the
onSurfaceCreated method:

private float mAngle;

private long mLastFrameTime = 0;

296  Chapter 11  Creating Advanced Graphics

float[] mVertices = {

	 -1.0f, -1.0f, 0,

	 1.0f, -1.0f, 0,

	 0.0f, 1.0f, 0};

FloatBuffer mVertexBuffer;

public void onSurfaceCreated(GL10 gl, EGLConfig config) {

	 // Set up the triangle vertices in FloatBuffers as needed
	 p by OpenGl

	 ByteBuffer vertexByteBuffer = ByteBuffer.allocateDirect
	 p (mVertices.length * 4);

	 vertexByteBuffer.order(ByteOrder.nativeOrder());

	 mVertexBuffer = vertexByteBuffer.asFloatBuffer();

	 mVertexBuffer.put(mVertices);

	 mVertexBuffer.position(0);

}

3.	 Update the onSurfaceChanged method to set the projection matrix. OpenGL
assumes a square display, so you need to change the aspect ratio of the
graphics to match that of the screen:

public void onSurfaceChanged(GL10 gl, int width, int height) {

	 gl.glViewport(0, 0, width, height);

	 // Select the projection matrix

	 gl.glMatrixMode(GL10.GL_PROJECTION);

	 // Reset the matrix to default state

	 gl.glLoadIdentity();

	 // Calculate the aspect ratio of the window

	 float ratio = (float) width/height;

	 GLU.gluPerspective(gl, 45.0f, ratio, 0.1f, 100.0f);

	 // Set the GL_MODELVIEW transformation mode

Using OpenGL  297

	 gl.glMatrixMode(GL10.GL_MODELVIEW);

	 gl.glLoadIdentity();

}

4.	 Update the onDrawFrame method of ExampleRenderer to set the color of the
view based on the color fields and to draw the triangle. This should look
familiar if you have done any OpenGL graphics:

public void onDrawFrame(GL10 gl) {

	 gl.glClearColor(mRed, mGreen, mBlue, 1.0f);

	 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.
GL_DEPTH_BUFFER_BIT);

	 updateAngle();

	 gl.glLoadIdentity();

	 gl.glTranslatef(0.0f, 0.0f, -7.0f);

	 gl.glRotatef(mAngle, 0.0f, 0.0f, 1.0f);

	 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);

	 gl.glColor4f(255f, 255f, 255f, 0.0f);

	 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, mVertexBuffer);

	 gl.glDrawArrays(GL10.GL_TRIANGLES, 0, 3);

	 gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);

}

5.	 You need to implement the updateAngle() method:

private void updateAngle() {

	 long now = System.currentTimeMillis();

	 if (mLastFrameTime != 0) {

		 mAngle += 10*(now - mLastFrameTime)/1000.0;

	 }

	 mLastFrameTime = now;

}

298  Chapter 11  Creating Advanced Graphics

6.	 Create a new view named ExampleGLSurfaceView that extends GLSurfaceView:

public class ExampleGLSurfaceView extends GLSurfaceView {

	 public ExampleGLSurfaceView(Context context) {

		 super(context);

	 }

}

7.	 Create an instance of the Renderer class, and set it as the renderer:

public class ExampleGLSurfaceView extends GLSurfaceView {

	 public ExampleRenderer mRenderer;

	 public ExampleGLSurfaceView(Context context) {

		 super(context);

	 	 mRenderer = new ExampleRenderer();

	 	 setRenderer(mRenderer);

	 }

}

8.	 Override the onTouchEvent method to implement the touch logic. This is
almost identical to the version in the RenderScript example, but this time
it will call the setColor method you just created:

@Override

public boolean onTouchEvent(MotionEvent event) {

	 switch (event.getAction()) {

	 case MotionEvent.ACTION_DOWN:

	 case MotionEvent.ACTION_MOVE:

		 final float x = event.getX()/getWidth();

		 final float y = event.getY()/getHeight();

		 queueEvent(new Runnable() {

			 @Override

			 public void run() {

Using OpenGL  299

				 mRenderer.setColor(x, y, 0.5f);

			 }

		 });

		 return true;

	 }

	 return super.onTouchEvent(event);

}

9.	 Use this new view in the ExampleOpenGLActivity:

public class ExampleOpenGLActivity extends Activity {

	 GLSurfaceView mGLView;	

	 @Override

	 public void onCreate(Bundle savedInstanceState) {

		 super.onCreate(savedInstanceState);

	 	 mGLView = new ExampleGLSurfaceView(this);

		 setContentView(mGLView);

	 }

	 ...

This uses the queueEvent method of GLSurfaceView to schedule the background
color change. GLSurfaceView performs all rendering on a separate thread from the
standard Android UI, so you should be mindful of thread communication issues.
The queueEvent method is a convenience that lets you post new tasks to run in
the GLSurfaceView thread.

You should now have an example that works just like the RenderScript and
SurfaceView examples. A single triangle slowly rotates on the screen. As you slide
your finger across the screen, the background color changes in response. This is
only scratching the surface of OpenGL development. In addition to using the Java
APIs, Android supports running a fully OpenGL-compatible application through
the NDK. This offers the maximum portability for high-performance graphics code.

300  Chapter 11  Creating Advanced Graphics

Wrapping Up

Android provides several advanced graphics options with increasing levels of
performance. There are important tradeoffs to each API. The Canvas class offers
the simplest API, but with limited performance. It’s a good fit for basic graphics
that don’t require complex animations or user interaction. The newly introduced
RenderScript API offers a good balance of performance with ease of programming,
and it has the added advantage of easy portability across different device archi-
tectures. Finally, Android supports high-performance graphics using the OpenGL
APIs. These are the most advanced graphics available on Android and should be
used when you need to create high-performance applications like games.

JJ Use the SurfaceView class to achieve better performance by moving your
drawing off the UI thread.

JJ The TextureView class provides the same API as SurfaceView but supports
standard view transformations.

JJ RenderScript is an architecture-independent, high-performance computing
API that uses a simple C-based syntax.

JJ Android’s OpenGL implementation includes both a Java API and a Native
Development API.

Wrapping Up  301

12

Localization and
Accessibility

303

Creating a successful Android application requires

that you reach the largest audience possible. To that

end, you should work from the beginning to make your app

language agnostic and accessible to people with disabilities.

Localization will help you launch your app in more countries,

expanding your potential market to the whole world. Accessibil-

ity will also expand your target market, while helping those with

special requirements utilize the next generation of computing. In

this chapter, you will learn that using the strings.xml file allows

you to create multiple copies of your app strings in different lan-

guages; that you can define plural strings that present different text

based on the input number; that Android UI elements that have

no text should include a content description for screen-reading

software; and that accessibility events are sent by views, enabling

the accessibility service to notify the user.

In Chapter 3, you learned about application resources and how Android uses folder
structure to separate resources for different device configurations at runtime. This
is very helpful in building apps that support multiple screen sizes. This same
mechanism allows you to localize your app with alternate strings and resources
for each locale.

Overview of Android Localization

Throughout this book, you have been instructed to use string resources when
displaying text in your UI. This may seem like a burden, but it greatly simplifies
localization. By specifying all strings in the strings.xml file, you can create differ-
ent versions of that file for each language you need to support. Android will then
select the appropriate string resources at runtime, based on the user’s selected
language and region.

Android will mix and match strings from different strings.xml files. It will
always select the most appropriate string based on the user’s locale and your pro-
vided resources.

Android separates resources using the folders in the res/ directory. For exam-
ple, the res/layout directory is the default directory for layout files. But you can
create a landscape-specific layout by placing a layout with the same name in the
res/layout-land/ folder. Similarly, when you create strings, you place them in
the res/values/strings.xml file. These are the default strings that will be used
throughout your application. When you want to create a Spanish-language version
of your app, you first translate all the strings in the strings.xml file. Then you place
the translated file in the res/values-es/ folder. When your application references
a string resource, the system will automatically use the Spanish-language version
when the user’s system default is Spanish. For French, you would create another
strings.xml file and place it in the res/values-fr/ folder.

Note:  Android uses the ISO 639-1 language codes followed by an
optional ISO 3166-1-alpha-2 region code for language and region

qualifiers. Consult the Android documentation on providing
resources (http://developer.android.com/guide/topics/resources/

providing-resources.html) for the full list of qualifiers.

Making Your App Available
in Multiple Languages

304  Chapter 12  Localization and Accessibility

http://developer.android.com/guide/topics/resources/providing-resources.html
http://developer.android.com/guide/topics/resources/providing-resources.html

Try creating a simple example:

1.	 Open Eclipse and create a new Android project.

2.	 Open the res/values/strings.xml file. There should be a string named
“hello”:

<?xml version=”1.0” encoding=”utf-8”?>

<resources>

	 <string name=”hello”>Hello World!</string>

	 <string name=”app_name”>AccessibilityExample</string>

</resources>

3.	 Create a Spanish-language version of that string. Create a new folder named
res/values-es/. Then create a new strings.xml file inside it, and add the
following content:

<?xml version=”1.0” encoding=”utf-8”?>

<resources>

	 <string name=”hello”>¡Hola Mundo!</string>

</resources>

The app_name resource remains the same, so you don’t need to create a
translated version. Android will select resources from both files.

4.	 Run the app as you normally would, and you should see the standard Hello
World app. Now change the emulator language to Spanish by choosing Set-
tings > Language and Input > Language > Spanish. Rerun the app, and the
displayed string is now in Spanish.

You are not limited to using language for localization; you can also create alternate
resources for specific mobile country codes (MCC) and mobile network codes (MNC).
Using these qualifiers allows you to create resources for specific geographic regions.

Tip:  The MCC and MNC qualifiers take precedence over the
language qualifiers. Make sure you understand resource loading
precedence, and set up your resource folders appropriately.

Making Your App Available in Multiple Languages  305

Note that you do not need to alter your Java code for the correct string to be
selected. You simply reference strings as normal, and Android will load the correct
resource. In the previous simple example, the code to access the string is the same
regardless of the language:

String translatedText = getResources().getString(R.string.hello);

In addition to translated strings, you can provide language-specific layouts for
your application. Languages with longer words or a different text direction (such
as right to left) may require you to rethink your layouts. In general, you should try
to create layouts that are flexible enough to accommodate any language. When
this is not possible, use alternative resources to change your UI to accommodate
the alternative text.

In most cases, you should let the Android framework do the work of selecting
the appropriate resources for you. But for those occasions when you need to access
the locale yourself, you can do so as follows:

String locale = context.getResources().getConfiguration().locale;

Formatting and Plurals

Beyond basic language selection, you should also leverage Android’s ability to
format strings for you. Android supports using string substitution (which is similar
to string formatting in Java) to build strings.

<string name=”example”>A string: %1$s and a decimal: %2$d</string>

Tip:  Always create default resources for your application.
If Android is unable to locate a suitable resource for the

user’s locale, an exception will be thrown indicating that the resource
could not be found. Default resources are those that have no device-
configuration qualifiers.

306  Chapter 12  Localization and Accessibility

In this example, the first argument (numbered 1) is a string and the second
argument (numbered 2) is a decimal. To format this string, you supply arguments
to the getString method of Resources:

getResources().getString(R.string.hello, “Hello”, 2);

In addition to basic string formatting, Android allows you to define alterna-
tive strings for different pluralizations. Android lets you define these using string
resources. Here is an example:

<?xml version=”1.0” encoding=”utf-8”?>

<resources>

	 <plurals name=”planets”>

		 <item quantity=”one”>One planet.</item>

		 <item quantity=”other”>%d planets.</item>

	 </plurals>

</resources>

As you can see, when the quantity “one” is used, the string uses the singular
“planet.” When any other number is used, it becomes “planets.” The full list of
plural types is listed in Table 12.1.

Table 12.1  Plural Quantities

Quantity Value Description

zero Special handling of 0 in languages such as Arabic

one Special handling of 1 in languages such as Russian and English

two Special handling of 2 in languages such as Welsh

few Special handling for small numbers in languages such as Polish

many Special handling of large numbers in languages such as Maltese

other Used when the language requires no special treatment of a number

Making Your App Available in Multiple Languages  307

To retrieve the proper string in code, you need to use the getQuantityString
method:

Resources res = getResources();

String songsFound = res.getQuantityString(R.plurals.planets,
p numPlanets, numPlanets);

The getQuantityString method takes three arguments: the string resource
ID, a number to select the appropriate plural string, and the same number again
to insert into the %d field of the string. If no substitution is necessary, the third
parameter may be omitted.

Tips for Localizing

JJ Always include default resources in your app. If you fail to include them,
your app will crash when running in an unsupported locale.

JJ Always define user-visible strings in the strings.xml file. Use the default
strings.xml when you start developing your application. You can add
translated versions later.

JJ Use quantity strings to handle any plural strings in your app.

JJ Design your layouts to be as flexible as possible to accommodate languages
that may have different space requirements.

JJ Test your application in the alternative languages you support, and check for
any formatting errors. Consider creating alternative resources for those cases.

Note:  The plurals resources will only be selected in cases where the
language requires it. In other cases, the default will be used. For example,

in English, you would say “zero items,” “one item,” or “two items.”
The zero and two cases use the same plural. Android will ignore the zero

quantity even if you create one.

308  Chapter 12  Localization and Accessibility

Making Your App Accessible

Android is part of the next generation of personal computing—a generation that is
defined by natural user interfaces such as touchscreens. While this has been a boon
to most, many users have disabilities that prevent them from using touchscreens.
Android features accessibility support that developers should use to ensure that
all users can enjoy their work. This section covers the basics of ensuring that your
application is accessible.

Navigation and Focus

The first step to making your Android app accessible is allowing use without a
touchscreen. This generally takes the form of a directional pad (d-pad) for select-
ing UI elements before activating them. Luckily, Android was designed from the
beginning to support phones with directional input. All views in Android support a
focused state, allowing navigation without a touchscreen. When a view is focused,
it is highlighted in the UI and a primary button press will trigger an onClick event.

Android’s built-in views already provide focus behavior, and any custom views
you create that inherit from View will retain that ability. However, if you create a
custom UI for your view (custom button drawables, for example), you should pro-
vide focused states along with pressed states. In addition, you should test navigat-
ing your app UI using only the d-pad. Pay special attention to the order in which
views are focused. Does it make sense that this view is in focus after the previous
one? If not, you can change the focus ordering in your layout files by using the
android:nextFocus* attributes. These attributes let you define which view will
be the next to receive focus. This is useful for more than just accessibility: Using
focus lets you define which fields are selected when the user tabs through your
UI using a keyboard.

Making Your App Accessible  309

Here is an example layout that contains three buttons (Figure 12.1):

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/
p apk/res/android”

	 android:layout_width=”match_parent”

	 android:layout_height=”match_parent”

	 android:orientation=”vertical” >

	 <Button

		 android:id=”@+id/button1”

		 android:layout_width=”wrap_content”

		 android:layout_height=”wrap_content”

		 android:text=”@string/button” />

	 <LinearLayout

		 android:layout_width=”match_parent”

Figure 12.1  To navigate
between these buttons using
the directional pad, use the
android:nextFocus* attributes
to configure which button will
gain focus.

310  Chapter 12  Localization and Accessibility

		 android:layout_height=”wrap_content” >

		 <Button

			 android:id=”@+id/button2”

			 android:layout_width=”wrap_content”

			 android:layout_height=”wrap_content”

			 android:text=”@string/button” />

		 <Button

			 android:id=”@+id/button3”

			 android:layout_width=”wrap_content”

			 android:layout_height=”wrap_content”

			 android:text=”@string/button” />

	 </LinearLayout>

</LinearLayout>

Run the example on the emulator, and use the navigation buttons to cycle
through the buttons. Notice that if you press just the up and down buttons, you
cannot reach the button on the right. To fix this, add the nextFocus attributes:

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/
p apk/res/android”

	 android:layout_width=”match_parent”

	 android:layout_height=”match_parent”

	 android:orientation=”vertical” >

	 <Button

		 android:id=”@+id/button1”

		 android:layout_width=”wrap_content”

		 android:layout_height=”wrap_content”

		 android:text=”@string/button” />

	 <LinearLayout

Making Your App Accessible  311

		 android:layout_width=”match_parent”

		 android:layout_height=”wrap_content” >

		 <Button

			 android:id=”@+id/button2”

			 android:layout_width=”wrap_content”

			 android:layout_height=”wrap_content”

			 android:text=”@string/button”

			 android:nextFocusDown=”@+id/button3” />

		 <Button

			 android:id=”@+id/button3”

			 android:layout_width=”wrap_content”

			 android:layout_height=”wrap_content”

			 android:text=”@string/button”

			 android:nextFocusUp=”@id/button2” />

	 </LinearLayout>

</LinearLayout>

Now when you use the down and up keys to navigate, you will cycle through
all the buttons.

Content Description

Beyond making your UI navigable by d-pad, you should strive to make it usable
by users with impaired vision. Vision-impaired users will not be able to navigate
your UI solely via a touchscreen interface. To work around this, users with vision
disabilities rely on screen readers to speak the UI elements as they slide their fin-
gers over the display. The screen reader reads the text of the view that the user is

Tip:  Test your UI using both up/down directions and
left/right directions to ensure that it properly responds to

all directional input.

312  Chapter 12  Localization and Accessibility

touching. However, many UI elements convey their meaning visually rather than
via text. For those elements, you should set the android:contentDescription
attribute to provide a description of the view. Here is an example that sets the
android:contentDescription attribute on an ImageView:

<ImageView

	 android:id=”@+id/image”

	 android:src=”@drawable/example_drawable”

	 android:contentDescription=”@string/description” />

When accessibility features are enabled, users who touch the image will hear
the contents of the android:contentDescription attribute read aloud. By slid-
ing a finger across the screen, visually impaired users can navigate and use your
application with just spoken text.

Accessibility Events

Accessibility features are provided by Android’s accessibility service. For the service
to work, all views need to implement the AccessibilityEventSource interface and
emit AccessibilityEvents when the state of the view changes. These events are
used by the AccessibilityService to provide users with awareness of events in
the UI. Changes in text, changes in focus state, and changes in click state are all
examples of events. The View class and its descendants already send Accessibility
Events at the appropriate times. However, when you implement a custom view,
you may want to generate AccessibilityEvents yourself, to handle any new func-
tionality the base class may be missing.

Accessibility events include properties that describe the event and its source.
If you extend a built-in view class, the base view will supply these properties for
you. Use the sendAccessibilityEvent method to send the event with the default
properties:

sendAccessibilityEvent(AccessibilityEvent.TYPE_VIEW_CLICKED);

And if you need to change or add event properties, implement the dispatchPopulate
AccessibilityEvent method to adjust the event properties:

Making Your App Accessible  313

@Override

public boolean dispatchPopulateAccessibilityEvent
p (AccessibilityEvent event) {

	 boolean populated = super.dispatchPopulateAccessibilityEvent
	 p (event);

	 if (!populated) {

		 event.setChecked(mChecked);

	 }

	 return populated;

}

The Android documentation contains the full list of accessibility events that
you should be emitting. Take care to test your app using accessibility features to
verify that you are properly serving users with disabilities.

Tips for Making Your App Accessible

JJ If possible, use the standard views provided by Android. They already fol-
low accessibility guidelines.

JJ Always use the android:contentDescription attribute on visual elements
that don’t include text, such as ImageViews.

JJ Always follow the platform guidelines on proper usage of the Back button.
This is especially important for users with disabilities, who may be using
your app without using the touchscreen.

JJ Test your application on your phone or emulator by choosing Settings >
Accessibility and enabling accessibility features.

JJ Download a screen reader from the Android Market to test your app using
voice-only navigation; the TalkBack app by the Eyes-Free Project is a good
choice. Note that this may be unnecessary, as some devices have TalkBack
installed by default.

314  Chapter 12  Localization and Accessibility

Wrapping Up

Localizing your app is required if you want to expand your market reach into other
countries. And ensuring that your app is accessible not only expands your potential
market, it helps people with disabilities make better use of technology. By following
Android best practices, you can achieve both with minimal effort. In this chapter,
you learned that

JJ You should use Android’s resource qualifiers to provide translated strings
for your app.

JJ You should always provide default resources; otherwise, your app may crash.

JJ You should add focus and content description attributes to your views to
make them navigable by users with impaired vision.

JJ When creating a custom view, you should make sure you emit the proper
accessibility events so that the accessibility service can properly handle
UI events.

As a final wrap up, I want to encourage you to take any knowledge you’ve gained
here and use it to create something awesome. Throughout this text, I’ve tried to
show you how to build fluid, beautiful software. It’s not always easy, but your users
will thank you for the effort. If you do find this book helpful, and you go on to
create an Android application, please let me know via Twitter (@jasonostrander).
I love trying new apps and would love to see what you’ve come up with. Good luck!

Wrapping Up  315

Index

@ symbol, using with resources, 17

A
accelerated rendering

disabling, 252
enabling, 252

accessibility
content description, 312–313
contentDescription attribute, 314
events, 313–314
focus, 309–312
guidelines, 314
navigation, 309–312
nextFocus attributes, 311–312
screen reader, 314
testing, 314
tips, 314
views, 314

action bar, 166. See also menus
action items, 166–167
action views, 169–170
ActionProvider class, 170–171
buttons, 167
overflow menu, 169
ShareActionProvider class, 171
split, 168

action bar navigation, tabbed
interface, 172–173

ActionBarSherlock library, 169
ActionBar.TabListener interface, 173
activities

in back stack, 62
callbacks, 59
configuration changes, 63
creating, 58
creating and destroying, 19
declaring, 57
declaring intents, 57
findViewByID method, 60
grouping into tasks, 61–63
life cycle, 58–60
manifest entry, 57
as objects, 19
onCreate method, 58
onPause method, 58
overriding OnCreate method, 60
Paused state, 58

popping off stack, 61
Resumed state, 58
Running state, 58
saving current states of, 62
setContentView, 60
states, 58
Stopped state, 58
XML layout file, 60

Activity class, 17–19
callback structure, 18
R.java file, 18–19
setting views, 18

Adapter class
using, 182–183
ViewHolder pattern, 182–184

adapters, optimizing, 182–184
AdapterViewFlipper collection

view, 206
alert dialog, 89
AlertDialog.Builder class, 90
Android API versions, declaring in

manifest, 12
Android apps

compatibility, 11
folder structure, 9
resources, 12–13
responsiveness, 27

Android Asset Studio, 31
Android Device Chooser, 6–7
Android emulator, 6, 8, 26
Android manifest

Android API versions, 12
contents, 10
hardware features, 11
icons, 11
labels, 11
permissions, 11

android: prefix, using, 38
Android SDK, x
Android SDK Manager, xi
Android SDK Release 13, 4
Android Virtual Devices (AVDs), 26

creating, 6–7
emulated, 26
graphics stack, 26

AndroidManifest.xml item, 9
android:maxSDKVersion, 12
android:minSDKVersion, 12

android:targetSDKVersion, 12
animated ball

creating, 232–234
ImageView, 233
stop() and start(), 233

animateDigit function, creating,
243–244

animation sets
examples, 236–237
ordering property, 251

AnimationListener, using, 239
animations. See also

drawable animations;
property animations;
sliding animations;
view animations

clock-flipper, 240–245
counter.xml, 241–242
defining, 235–237
digit.xml layout, 240
fillAfter attribute, 239
hardware acceleration, 252
interpolators, 238
startAnimation method, 238
TextView, 238–240
three-button layout, 310–311
using, 238–239
view transparency, 236–237

AnimatorSet object
play method, 250
using with property animations,

249–250
ANRs (Application Not Responding)

background tasks, 66–70
occurrence of, 64
preventing, 64–70
StrictMode, 64–65

API level declaration
android:maxSDKVersion, 12
android:minSDKVersion, 12
android:targetSDKVersion, 12

app drawer
contents, 14–15
launcher for, 14

app launcher, using, 14
apps

compatibility, 11
folder structure, 9

316  Index

resources, 12–13
responsiveness, 27

AppWidgetProvider class, 197–200
onDeleted method, 197
onDisabled method, 197
onEnabled method, 197
onReceive method, 197
onUpdate method, 197, 201

AppWidgetProviderInfo XML file,
191–195, 209–210

autoAdvanceViewID, 194
configure, 194
icon, 194
initialLayout, 194
label, 194
minHeight, 194
minResizeHeight, 194
minResizeWidth, 194
minWidth, 194
previewImage, 194
resizeMode, 194
updatePeriodMillis, 194

assets/ folder, 9
AsyncTask class, 69–70. See also tasks
attributes

adding to custom views, 267–273
AttributeSet object, 271
crosses, 270
CrossView, 267, 269–270, 273
declaring, 267–269
enums, 269
flags, 269
namespace, 269
predefined values, 268
rotating canvas, 272
using in code, 271–273
ViewGroup, 269
in XML, 269–270

AttributeSet object, using, 271–273
AVDs (Android Virtual Devices), 26

creating, 6–7
emulated, 26
graphics stack, 26

B
Back button, 19, 61–62
back stack, 61–63 161

background tasks. See also
TimeTracker app

Activity.runonUIThread
method, 68

AsyncTask class, 69–70
Handler class, 66
handlers and message queues,

66–68
Looper class, 66
message queue, 68
resetTimer method, 68
sendEmptyMessage method, 67
stopTimer method, 68

ball, animating, 232–234
bitmaps, using, 127
Boolean buttons, creating, 119
build target, setting, 5
Button

adding below TextView, 25
using, 128
view object, 37

button states, 95
buttons

creating for TimeTracker app, 118
in linear layout, 42–43
in relative layout, 46

C
callbacks, receiving, 64
canvas

described, 22
drawing to SurfaceView, 282
implementing SurfaceView, 282
rotating, 272
TextureView class, 288

circles, making for ball, 232–234
click handling, avoiding anonymous

classes, 93
clock-flipping animation

animateDigit function, 243–244
creating, 240–245
setting time, 242
sliding animations, 244–245
triggering, 242

collection widget. See also views;
widgets

AdapterViewFlipper, 206

GridView, 206
layout, 206–207
ListView, 206–207
RemoveViewsFactory, 208–210
service, 208–210
StackView, 206

colors
placing in res/values folder, 13
transparent, 194

compound components
creating, 274–276
versus custom views, 274
optimizing layouts, 277–278
ToggleButton with EditText, 276

configuration changes, handling, 62
confirm dialog, creating, 90–91
confirmation dialog, creating, 93
constant values, placing, 13
context menus

creating, 100–101
long pressing, 94

counter.xml file, using with
animation, 241–242

CrossView
changing color of, 273
rotating, 273

CursorLoader example, 185
custom attributes

adding to custom views, 267–273
AttributeSet object, 271
crosses, 270
CrossView, 267, 269–270, 273
declaring, 267–269
enums, 269
flags, 269
namespace, 269
predefined values, 268
rotating canvas, 272
using in code, 271–273
ViewGroup, 269
in XML, 269–270

custom views. See also views
accessing resources, 263
activity for display of, 265
versus compound components, 274
creating, 259–260
CrossView, 265
custom attributes, 267–273

Index  317

custom views (continued)
drawLines method, 265
inner classes, 266
onDraw method, 263–266
onMeasure method, 260–262
Paint object, 263–266

D
data binding

SimpleAdapter, 181
SimpleCursorAdapter, 181

DDMS (Dalvik Debug Monitor
Server), xi, 29

debug mode, detecting, 65
debug signing key, detecting, 65
default.properties item, 9
density-independent pixels (dp), 38,

80–81
detail_item.xml layout, creating, 141
developer tools

downloading, 4
Draw 9-Patch, 30
graphical layout editor, 22–25
layoutopt, 30
Monkey, 31

device configuration
changes, 62
editor, 24

dialogs
confirm, 90–91
confirmation, 93
creating, 89
DialogFragment, 91
fragments, 91
pre-Android 3.0, 90

digit.xml layout, using with
animation, 240

dimension units
in (inches), 81
dip (density-independent pixel), 81
dp (density-independent pixel), 81
mm (millimeters), 81
pt (points), 81
px (pixels), 81
sp (scaled pixel), 81

dimensions, placing in res/values
folder, 13

dip (density-independent pixel), 81
disk I/O, detecting with StrictMode,

64–65
display, drawing, 258
dp (density-independent pixels), 38,

80–81
Draw 9-Patch tool, using, 30, 82
drawable animations. See also

animations
creating, 232–234
ImageView, 233
making visible, 232
stop() and start(), 233

drawables
Button class, 128
StateListDrawable, 128
using, 128–129

drawing display, 258
DrawingThread class, using with

SurfaceView, 284
drawLines method, using, 265
DummyTabFactory, using, 177

E
Eclipse IDE, x, 4, 9
edit_task.xml layout

adding button to, 118–119
creating, 117–118

EditText class
combining with ToggleButton, 276
flags, 116
inputType attribute, 116
using, 112–114

email client, opening, 14
emulator, 6, 8, 26
event callbacks, 92
event handling, 92

focus events, 95
key events, 95
long presses, 94
main thread, 92
onClickListener, 93
screen taps, 93

Example project
creating, 4
project structure, 9
running on phone, 8

F
fill parent, 38
fillAfter attribute, using with

animations, 239
focus events, triggering, 95
form widgets, availability of, 37.

See also widgets
forms

Boolean buttons, 119
buttons, 118
EditText, 112–113
fillViewPort attribute, 121–123
managing settings, 120
ScrollView container, 120–121
simplifying text entry, 115–118
spinners, 119
TextView, 112–115

fragments
adding, 160
adding to layouts, 154
adding to TimeTracker app, 156–159
back stack, 161
features, 153
modifying, 160
no-argument constructor, 156
onCreate activity callback, 155
onDestroy activity callback, 155
onPause activity callback, 155
onResume activity callback, 155
onStart activity callback, 155
onStop activity callback, 155
removing, 160
transactions, 159–160

FrameLayout container, using with
views, 41

functions, adding via action bar, 171

G
gen/ folder, 9
GestureDetector class

onTouchEvent method, 225
using, 225–226

gestures
customizing, 228
detecting thread violations,

225–226

318  Index

GestureDetector class, 225–226
pinch-to-zoom, 227–228
ScaleGestureDetector class,

226–228
getQuantityString method, using in

localization, 308
Google APIs website, 130
Google Maps, adding permission

for, 131
graphical layout editor, 22–25

Canvas, 22
Configuration drop-down menu, 22
Outline, 23
Package Explorer pane, 24
Palette, 23
tabs, 23

graphics
drawing, 296–300
projection matrix, 297–298
touch logic, 299–300
updateAngle() method, 298–299

gravity attribute, using with views,
39–40

GridLayout container
adding space, 50
margins and padding, 50
Spaces, 50–51
versus TableLayout, 50
using with views, 48–51

GridView collection view, 206

H
Handler class, using with background

tasks, 66
hardware acceleration, adding, 252
hardware buttons

alternative actions, 21
Back, 19
Home, 19
Menu, 20
Search, 21

hardware features, declaring in
manifest, 11

Hello World app
Android Device Chooser, 6–7
Android emulator, 6, 8

AVD (Android Virtual Device), 6–7
Build Target option, 5
creating, 4–8
drawable folders, 12
main.xml file, 16
package name, 5
properties, 5
running, 5
strings.xml file, 12

“Hello World!” text, displaying, 218
Hierarchy Viewer, xi

child LinearLayout, 28
DDMS Devices pane, 29
debugging nested LinearLayouts, 29
FrameLayout, 28
Layout View, 28
left sidebar, 28
LinearLayout, 28
PhoneWindow, 28
Tree Overview, 28
Tree View, 28
using, 27

Holo theme, using, 152
Home button, 19
home screen

app launcher icons, 14
grid layout, 196
options menu, 20
replacement of, 15
widgets, 14

I
icons

creating with Android Asset
Studio, 31

declaring in manifest, 11
quick-launch, 14

image resources, creating, 31. See also
resources

images
bitmaps, 127
center scale type, 125
centerCrop scale type, 125
centerInside scale type, 125
displaying, 124–129
drawables, 128–129

drawing into views, 129
fitCenter scale type, 125
fitEnd scale type, 125
fitStart scale type, 125
fitXY scale type, 125
ImageView and resources, 124–126
loading, 125
matrix scale type, 125
scaleType attribute, 126
scaling, 125

ImageView, for drawable
animations, 233

IME (input editor), changing, 115
in (inches), 81
inches (in), 81
<include> tag

in detail page, 141–143
examples, 140–141
layout attribute, 140
ls, 140–143

inflation, explained, 97
input editor (IME), changing, 115
Interpolator, ValueAnimator

class, 246
interpolators

accelerate, 238
bounce, 238
decelerate, 238
overshoot, 238
using with animations, 238

ISO 639-1 language codes, 304
ISO 3166-1-alpha-2 region code, 304

J
Java perspective, opening in Eclipse, 4

K
key events, 95

L
labels, declaring in manifest, 11
language-specific layouts,

providing, 306

Index  319

layout containers
FrameLayout, 41
GridLayout, 48–51
LinearLayout, 42–45
RelativeLayout, 45–47
TableLayout, 41–42
ViewGroups, 37

layout resource qualifiers, 77
layout_gravity attribute, using, 40
layout_margin attribute, using with

views, 39
layout_weight example, 43
LayoutInflater class, 97
layoutopt tool, using, 30
layouts

adding fragments to, 154
choosing dimensions for, 38
defaults, 52
flexibility, 83
<include> tag, 140–143
inflating, 56
life cycle, 154–159
margins and padding, 38
<merge> tag, 144–146
nesting, 144
optimizing, 30
TextView example, 154–155
three buttons, 310–311
views in, 17
ViewStub class, 146–147

LayoutTransition class, using, 254
LinearLayout container

orientation setting, 42
using with views, 42

LinearLayout container type, 16–17
debugging, 29
in Hierarchy Viewer, 28

list adapters, loading data into, 56
list navigation mode

data binding, 174
OnNavigationListener, 174
SpinnerAdapter, 174

list position, saving, 62
ListActivity, using, 52
ListAdapter

overriding getView method, 54
using, 54

lists
binding data to, 54–56
displaying, 52–56
row layout, 53–54
XML layout, 53–54

ListView
attributes, 53
collection view, 206–207
defining, 53
entries attribute, 54
using, 52

Loader helper class, using, 56
loaders

CursorLoader, 185
using, 184–185

localization
example, 305
formatting, 306–308
getQuantityString method, 308
ISO 639-1 language codes, 304
ISO 3166-1-alpha-2 region code, 304
language-specific layouts, 306
layouts, 308
MCC (mobile country codes), 305
MNC (mobile network codes), 305
overview, 304–306
plurals, 306–308
quantity strings, 308
resources, 304–306, 308
retrieving strings, 308
string substitution, 306–308
strings, 308
testing, 308
tips, 308
user-visible strings, 308

long presses, 94
Looper class, using with background

tasks, 66

M
main thread

avoiding blocking, 66
in event handling, 92
explained, 61

manifest entry, using for activities, 57
map key, registering for, 130
MapActivity, extending, 132

maps, adding to applications, 130–135
MapView, using, 130–132
margins and padding, 38
match_parent, 38
MCC (mobile country codes), 305
Menu button, 20, 96
MenuInflater class, 97
menus. See also action bar

assigning icons, 97
callbacks, 98–100
context, 94, 100–101
creating, 96
layout inflation, 97
layouts, 96–98
submenus, 97

<merge> tag
using, 144–146
using with ToggleButton, 278

millimeters (mm), 81
mm (millimeters), 81
MNC (mobile network codes), 305
Monkey tool, features of, 31
MotionEvent object

actions, 219–224
using, 219–224

N
navigation

accessibility, 309–312
action bar, 172–174
list mode, 174
TabWidget interface, 175–178
ViewPager behavior, 178
ViewPager class, 178–180

navigation mode, setting, 174
network I/O, detecting with

StrictMode, 64–65
nextFocus attributes, using for

accessibility, 311–312
notification tray, accessing, 15
Notification.Builder class, 88
notifications

creating, 86
dialogs, 89–91
NotificationManager, 87
options, 88
parameters, 86

320  Index

PendingIntent, 86–87
setLatestEventInfo method, 88
status bar, 85–88
toasts, 84–85

O
ObjectAnimator class, using with

property animations, 247–248
OnClickInterface, using with screen

taps, 93
OnClickListener interface, 71, 93
onDraw method, using with custom

views, 263–266
onMeasure method, using with

custom views, 260–262
onSaveInstanceState, using with

activities, 62
onTouchEvent method

GestureDetector class, 225
implementing, 216–219
updating, 221
using with SurfaceView, 287

OpenGL
1.0 standard, 294
activity, 295–296
drawing graphics, 296–300
example, 294–296
GLSurfaceView, 294
onDrawFrame, 295
onSurfaceChanged, 295
overview, 294

options menu functionality, 96
Outline, described, 23

P
Package Explorer pane, 24
package name, entering, 5
padding and margins, 38
padding attribute, using with views, 39
paging-style interface, using, 180
Paint object, using with custom

views, 263–266
Palette, described, 23
permissions, declaring in manifest, 11
phone dialer, opening, 14

pinch-to-zoom gesture,
implementing, 227–228

pixel density, variations, 80
pixels (px), 81
points (pt), 81
project structure

AndroidManifest.xml item, 9
assets/ item, 9
default.properties item, 9
gen/ folder, 9
res/ folder, 9
src/ folder, 9, 12–13

projection matrix, setting, 297–298
properties, setting, 5
property animations. See also

animations
AnimatorSet object, 249–250
LayoutTransition class, 254
ObjectAnimator class, 247–248
Property class, 249
ValueAnimator class, 246–248
ViewPropertyAnimator class, 253
in XML, 250–251

pt (points), 81
px (pixels), 81

R
RelativeLayout container, 45–47

child views, 46
using, 29
XMLAttributes, 47

RemoteViews class, using, 201–203
RemoveViewsFactory, using with

widgets, 208–209
RenderScript language, 289–293

buildTriangle() method, 293
downloading, 290
Java API, 291–293
RSSurfaceView class, 291
sample file, 289–291
syntax, 289–290
TriangleMeshBuilder, 293

res/ folder, 9, 12–13
res/layout folder, contents of, 12
resource qualifiers, 76–77

API version, 77
available height, 77

available width, 77
precedence, 78–79
screen orientation, 77
screen pixel density, 77
screen size, 77, 79
SmallestWidth, 77

resources. See also image resources
accessing at runtime, 263
referencing, 17

res/values/ folder, contents of, 13
R.java file, 18–19
rotating canvas, 272

S
scaled pixel (sp), 81
ScaleGestureDetector class, 226–228
scaling, using Draw 9-Patch tool for, 30
screen configuration, determining, 83
screen orientation, 77
screen pixel density, 77
screen sizes, 77, 79

Draw 9-Patch tool, 82–83
density-independent pixels (dp),

80–81, 83
resource qualifiers, 76–80

screen taps, 93
button-click actions, 93
confirmation dialog, 93
OnClickInterface, 93
onClickListener, 93

screenshots, taking, 29
ScrollView container

avoiding use of ListView in, 120
fillViewPort attribute, 121–123
using, 120–123
wrapping LinearLayout in, 121

Search button, 21
settings, managing, 120
ShareActionProvider class, 171
SimpleAdapter, using in data

binding, 181
SimpleCursorAdapter, using in data

binding, 181
sliding animations, creating, 244–245.

See also animations
sp (scaled pixel), 81

Index  321

spinners, creating, 119
src/ folder, 9
StackView collection view, 206
startAnimation method, using, 238
state

re-creating for activities, 62
saving, 62

StateListDrawable, using, 128
status bar notifications, creating,

85–88
StrictMode

declaring, 64–65
detecting thread violations, 65
disabling, 65
enabling, 65
explained, 64

string substitution, using in
localization, 306–307

strings
placing in res/values folder, 13
referencing, 19
retrieving in localization, 308

strings.xml file, contents of, 12
styles. See also themes

adding to TimeTracker app,
150–152

attributes, 149
defaults, 149
defining, 148
inheriting, 150
<item> elements, 149
placing in res/values folder, 13
RedText, 148–149

styles.xml file, creating, 150
submenus, opening, 97
sub-views, displaying in linear

fashion, 17. See also views
SurfaceView

drawing to, 283–288
DrawingThread class, 284
implementing, 282–283
onTouchEvent method, 287
rotating triangle, 288
versus TextureView class, 288

system attributes, prefix for, 38

T
tab layout, implementing, 175–177
tabbed interface, creating, 172–173
table layout, example of, 41
TableLayout container

versus GridLayout, 50
using with views, 41–42

TableRow container, using with
views, 41

TabWidget interface, using, 175–178
task_detail.xml, opening, 142
TaskListFragment class, creating, 156
tasks. See also AsyncTask class

back stacks, 62
creating, 62
grouping activities into, 61–63
switching between, 62

text, zooming, 225–226
text entry, simplifying, 115–118
TextureView class versus

SurfaceView, 288
TextView, 17

animating, 238–239
in clock-flipping animation, 240
dragging onto layout, 25
using, 112–114
using with fragment, 154–155
visibility states, 240

themes, 152. See also styles
threads, running in background, 66
three-button layout, using for

accessibility, 310–311
time_row-xml layout file, creating,

53–54
TimeListAdapter class, creating, 54
timer, stopping and resetting,

102–107
timer_appwidget_info.xml file,

creating, 191
timer_widget.xml layout, creating,

194–195
TimerFragment, creating, 156–158
TimerWidgetProvider class, creating,

197–200
TimeTracker app. See also

background tasks
adapter, 183–184

AppWidgetProviderInfo XML file,
191–195

Boolean buttons, 118
button presses, 71–72
buttons, 118
clearing tasks to, 99–100
clock-flipping animation, 240–245
confirm dialog, 90–91
convenience methods, 67–68
creating, 36
detail page, 141–143
edit_task.xml layout, 117–118
EditText, 113–114
fragments, 156–159
implementing, 102–107
<include> tag, 141–143
IntentFilter method, 106
layout for list view, 53–54
linear layout, 44–45
manifest entry for activities, 57
notification code, 106
OnClickListener interface, 71
overriding onClick method, 71
Reset button, 72
simplifying text entry, 115–118
Start/Stop button, 71–72
styles, 150–152
TextView, 113–114
timer layout, 159
timer update, 106
timerStopped method, 105
TimerWidgetProvider class,

197–200
tracking time intervals, 66–67
updateTime method, 105
widget, 191

toast notification, creating, 84–85
ToggleButton

combining with EditText, 276
<merge> tag, 278
using Hierarchy Viewer with, 277

tools
downloading, 4
Draw 9-Patch, 30
graphical layout editor, 22–25
layoutopt, 30
Monkey, 31

322  Index

touch events
MotionEvent object, 219–224
multi-, 219–223
onDraw method, 222
onTouchEvent method, 216–219, 221

touch logic, implementing, 299–300
touchscreen device, including in

manifest, 11
TranslateAnimation example, 236
triangle, drawing, 296–297
TriangleMeshBuilder, using, 293
TypeEvaluator, ValueAnimator class, 246

U
UI thread

avoiding blocking, 66
in event handling, 92
explained, 61

updateAngle() method,
implementing, 298

UpdateWidgetTime method,
implementing, 202

V
ValueAnimator class

Interpolator, 246
TypeEvaluator, 246
using with property animations,

246–248
view animations. See also animations

alpha option, 235
examples, 236–237
rotate option, 235
scale option, 235
translate option, 235
TranslateAnimation, 236

View attributes
accessing, 37
form of, 38
layout_margin, 39
padding, 39
specifying, 37–38

view hierarchy, 41
View objects

Button, 37
hierarchy of, 37

view transparency, changing, 236–237
ViewGroup

layout containers, 37
using in custom attributes, 269

ViewHolder pattern, using, 182–184
View.Inflate method, 97
ViewPager class, using, 178–180
ViewPropertyAnimator class,

using, 253
views. See also collection widget;

custom views; sub-views;
XML view

Adapter class, 182–183
adding space around, 38
arrangement of, 37
data binding, 181
dragging and dropping, 22–25
drawing, 258
fill parent, 38
FrameLayout container, 41
gravity attribute, 39–40
GridLayout container, 48–51
height and width, 38
inflating, 97
in layouts, 17
LinearLayout container, 42
loaders, 184–185
loading data into, 181–185
match_parent, 38
RelativeLayout container, 45–47
remote, 201–203
setting for activities, 18
TableLayout container, 41–42
TableRow container, 41
TextView, 17
visibility states, 147
wrap_content, 38

ViewStub layout, using, 146–147
virtual devices, 26

creating, 6–7
emulated, 26
graphics stack, 26

visibility states
applying to drawable

animations, 232
View.GONE, 147
View.INVISIBLE, 147
View.VISIBLE, 147

W
websites

ActionBarSherlock library, 169
AppWidgetProviderInfo XML file,

191–195
displaying, 130–135
enabling plugins, 134
Google APIs, 130
overriding URLs, 134–135
RenderScript API, 290
widget template, 190

WebView class
Flash support, 133
INTERNET permission, 133
using, 133–134
WebSettings object, 133

Widget Preview application, 195
widget size, calculating, 196
widget_background.xml drawable, 194
widgets, 14. See also collection

widget; form widgets
app template, 190
AppWidgetProvider class, 197–200
configuration activity, 203–205
declaring, 191
described, 190
layout, 192, 194–195
RemoveViews class, 201–203
UpdateWidgetTime method, 202

wrap_content, 38

X
XML layout, 16–17

converting to View objects, 56
LinearLayout container type, 16–17
setting for activities, 60

XML layout file, landscape version, 77
XML view, switching to, 23. See also

views
xmlns:android attribute, 16

Z
zooming text, 225–226

Index  323

Unlimited online access to all Peachpit,

Adobe Press, Apple Training and New

Riders videos and books, as well as content

from other leading publishers including:

O'Reilly Media, Focal Press, Sams, Que,

Total Training, John Wiley & Sons, Course

Technology PTR, Class on Demand, VTC

and more.

No time commitment or contract
required! Sign up for one month or
a year. All for $19.99 a month

SIGN UP TODAY
peachpit.com/creativeedge

creative
edge

	Contents
	Introduction
	Welcome to Android
	PART 1 BASIC ANDROID UI
	CHAPTER 1 GETTING STARTED
	Hello World
	Basic Structure of an Android App
	Android UI Basics
	Tools
	Wrapping Up

	CHAPTER 2 CREATING YOUR FIRST APPLICATION
	Creating an App
	Getting Started with Android Views
	Arranging Views
	Displaying a List
	Understanding Activities
	Preventing ANRs
	Finishing the TimeTracker App
	Wrapping Up

	CHAPTER 3 GOING FURTHER
	Supporting Multiple Screen Sizes
	Handling Notifications
	Handling Events
	Creating Menus
	Implementing the Time Tracker
	Wrapping Up

	PART 2 THE VIEW FRAMEWORK
	CHAPTER 4 BASIC VIEWS
	Creating a Basic Form
	Displaying Images
	Creating Maps and Displaying Websites
	Wrapping Up

	CHAPTER 5 REUSABLE UI
	Abstracting Your Layouts
	Abstracting Styles and Themes
	Using Fragments
	Wrapping Up

	CHAPTER 6 NAVIGATION AND DATA LOADING
	Introducing the Action Bar
	Navigating Your App
	Loading Data into Views
	Wrapping Up

	CHAPTER 7 ANDROID WIDGETS
	Creating a Basic Widget
	Creating a Collection Widget
	Wrapping Up

	PART 3 ADVANCED UI DEVELOPMENT
	CHAPTER 8 HANDLING GESTURES
	Listening to Touch Events
	Responding to Gestures
	Wrapping Up

	CHAPTER 9 ANIMATION
	Creating Drawable Animations
	Creating View Animations
	Creating Property Animations
	Wrapping Up

	CHAPTER 10 CREATING CUSTOM VIEWS
	Understanding How Android Draws Views
	Creating a Custom View
	Adding Custom Attributes to Your Custom Views
	Creating Compound Components
	Wrapping Up

	CHAPTER 11 CREATING ADVANCED GRAPHICS
	Using Canvas
	Using RenderScript
	Using OpenGL
	Wrapping Up

	CHAPTER 12 LOCALIZATION AND ACCESSIBILITY
	Making Your App Available in Multiple Languages
	Making Your App Accessible
	Wrapping Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

